
 

 

 

Fast FCAS Sampling Verification in Support 
of Market Ancillary Services Specification 
(MASS) consultation 

 

- Phase 3 

 
Prepared for the Australian Energy Market Operator 
  

  

Han Wang, Pierluigi Mancarella 

The University of Melbourne 

 

 

December 2021 

  



1 

Executive Summary 
The Australian Energy Market Operator (AEMO) initiated a consultation on the amendment of the Market 

Ancillary Service Specification (MASS), with regards to the requirements on the measurements for 

Distributed Energy Resource (DER) to participate in the Contingency Frequency Control Ancillary Services 

(FCAS) markets. Two stages of the MASS consultation have already been completed, whilst the third stage 

of the MASS consultation is still in progress. During the second stage of the MASS consultation, the 

University of Melbourne (UoM) was commissioned by AEMO to assess the impact of the sampling rates 

on the FCAS verification, during which high-resolution data (20ms/50ms) for aggregated responses from 

different VPP under various events were provided by AEMO. UoM was again commissioned by AEMO 

during the third stage of the MASS consultation to assess a wide range of factors that can affect the 

verification error and to establish a methodology to identify potential oscillatory responses. In that second 

study, UoM was provided with high-resolution data for various synchronous generators, as well as 

calculated NMI-level data for 1000 sites that had been made available by one market stakeholder and 

were characterised by a typical (droop-like) type of response for a variable/proportional FCAS controller. 

During the first and second studies, UoM identified seven key factors of relevance for the request analysis, 

namely, sampling rates, integration rules, frequency disturbance time, site aggregation, inertial response, 

compensation factor, and power measurement error.  

In November 2021, UoM was again commissioned by AEMO to further study the impact of aggregations 

on the verification error on the basis of actual/measured NMI-level data (for about 1600 sites) that had 

been made available by another market stakeholder. Overall, this was a more diverse dataset containing 

NMI-level data (i.e., frequency and power measurements) from sites with devices with different 

characteristics, and including, in particular, step-like responses, for two different contingency events.  

The study on site aggregation was repeated with the new dataset, based on which it is possible to draw 

the following conclusions, also in comparison with the results previously found: 

- Similar trends as in the previous report may be observed, i.e., the range of verification errors 

decreases when increasing the sampling rate and the number of sites in the aggregation.  

- From the analysis of the two events analysed, it emerged that the definition of “disturbance time” 

used in the current methodology may need to be revisited, in order to be better aligned with the 

actual time of local contingency detection (which is when the device is supposed to start 

responding). In fact, particularly in one of the two events analysed, the frequency was found to 

be “hovering” and oscillating around the normal operating frequency band (NOFB) for a few 

seconds prior to the actual contingency event detection. By applying the current definitions and 

without a local proxy of the contingency event time, which would require some adjustments even 

for data captured at 50ms intervals, the relevant frequency measurements might create a 

misalignment between the frequency disturbance time as currently defined and the actual 

contingency event time as locally detected.  

- In particular, when determining the assessment window in line with the requirements of the 

MASS, the current definition of the frequency disturbance time without a local proxy to identify 

the contingency event time may create relatively large errors even for relatively high sampling 

rates (e.g., 100ms and 200ms). It appears that this may be again essentially due to a misalignment 

of the defined frequency disturbance time and the time when the relevant contingency event is 

actually locally detected.   
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- A local proxy of the contingency event time should be properly defined and implemented in the 

FCAS verification tool, to better represent the whole VPP’s performance in the six-second window 

after the locally identified contingency event. This is because the local devices making up the VPP 

aggregate should provide response only when the contingency is locally detected, which may be 

different for devices at different locations. If such a local proxy of the contingency event can be 

well identified, the verification errors may decrease significantly. 

- In this report, we have used a heuristic approach to define such a proxy, which we called 

“contingency time identifier”. However, this should be considered only for the purposes of this 

work, and more and systematic work is required to develop a robust methodology to identify the 

local proxy of the contingency event. 

- Considering all the datasets analysed and the three studies performed so far, it appears that 

higher sampling rates and larger number of sites may significantly decrease verification errors. 

However, it also emerges that the specific numerical impact of these two factors is event-specific 

and may also depend on the type of devices and their response characteristics. It is therefore 

advised that the results of this work should be revisited at a later stage as “work in progress”, 

possibly using a wide range of several datasets for different contingency events, technologies, 

locations, etc. This applies to all levels of aggregation, and is particularly true for VPPs that have 

a relatively small number of sites (e.g., less than 100 sites), for which more data and studies are 

required to come up with more robust results.  
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1 Introduction  
In January 2021, the Australian Energy Market Operator (AEMO) launched a consultation on the 

amendment of the Market Ancillary Service Specification (MASS) with regards to measurements 

requirements for Distributed Energy Resource (DER) to participate in the Contingency Frequency Control 

Ancillary Services (FCAS) markets. Two stages of the MASS consultation have already been completed, 

while the third stage of the MASS consultation is ongoing. The University of Melbourne (UoM) was 

commissioned in the second stage and third stage of the MASS consultation to perform independent 

analysis on the fast FCAS verification process. The studies aimed to identify the impact of different factors 

on the verification errors, including sampling rates, integration rules, frequency disturbance time, site 

aggregation, inertial response, compensation factor, and power measurement error.  

The first study generally concluded that 1s sampling rate might introduce relatively significant verification 

errors in FCAS contribution assessment and a trapezoid interpolation rule generally outperform Reiman 

methods [1]. Then, UoM discussed how the FCAS verification tool was effectively using what was then 

called “relative-window” method, which defines the start of the six-second assessment window on the 

basis of the frequency disturbance time, i.e., the first recorded point that is outside the normal operating 

frequency band (NOFB) [1]. However, this method was inherently designed for high-speed data (i.e., 20ms 

and 50ms) and would not generally be suitable for much lower sampling rates as it would introduce errors 

in the assessment of the frequency disturbance time. A theoretical method was then introduced, for 

reference, in the first report, namely, the “universal window” method, which assumed that the NOFB is 

crossed simultaneously for all providers in each event. However, the application of this reference method 

would be hard to achieve in practice [1].  

In the second study, a novel “RoCoF-based” method was then proposed, which has similar performance 

as the “universal window” one and could be more readily implemented in the FCAS verification tool [2]. 

In this second study, the verification errors for synchronous generators were also analysed. The results 

indicated that lower sampling rates generally result in inaccurate estimation of the inertial response and 

compensation factor; hence, it was recommended that the current requirement of 50ms sampling rate 

should remain for synchronous generators [2]. Moreover, relaxing power measurement errors from 2% 

to 4% might introduce significant verification errors, and may thus not be suitable  [2]. Another question 

that was specifically addressed in the second study is site aggregation. The results indicated that using 

NMI-level data instead of aggregated response profiles can substantially reduce the verification errors, 

and the range of verification errors decreases when the number of sites being aggregated increases [2]. 

However, due to the data availability, the second report pointed that this matter should be studied in 

more detail, particularly in conjunction with the effect of sampling rate, by making use of more and 

possibly more diverse data. 

In November 2021, UoM was again commissioned by AEMO to perform further analyses on the site 

aggregation, whilst new datasets with more and more diverse responses were provided. More specifically, 

locally measured (at 50ms sampling rate) frequency and power data for individual NMIs of over 1600 sites 

and for two contingency events were given. The main focus of this study is put on the impact of the site 

aggregation and sampling rate on the verification errors based on the new dataset provided. This report 

aims to bring further insights and recommendations based on the new NMI-level data provided and takes 

into account the analyses previously conducted. 
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2 Methodology 

2.1 FCAS response verification process 
This report focuses on the verification of fast FCAS response of VPP using NMI-level data. The FCAS 

response verification process that is used follows the methodology defined in the second report [2], which 

is in line with the FCAS verification tool methodology. This methodology is summarised in the flowchart 

in Figure 1. The steps that are used in this report are highlighted as red blocks.   

 

Figure 1. Fast FCAS performance verification methodology (redrafted from [1]) 

More specifically, the following steps are implemented to verify the fast FCAS delivery for each site: 

- Derived adjusted power measurement: it is assumed that the VPP is not classified as scheduled 

or semi-scheduled units; thus, the power measurement remains unchanged. 

- Determine baseline (indicated as FA): calculate the average power of the profile before the 

frequency disturbance time. The frequency disturbance time is the time at which the local 

frequency falls or rises outside the NOFB, during a frequency disturbance [3]. Instead of using the 
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time average power of the 20s to 8s before frequency disturbance time, the time average power 

of 3s to 0s is used, as the high-speed data is only available for a 5s prior to the frequency 

disturbance time, in line with the requirement for fast FCAS verification [3].    

- Basic response measurements: the basic response measurements are calculated by subtracting 

the baseline from the adjusted power.  

- Compensation factor: it is assumed that the compensation factor is 1 for the “step-change” 

response.  

- Calculate fast FCAS delivery: calculate the power delivery in the assessment window using the 

trapezoid rule.  

The calculated fast FCAS delivery is then used to calculate verification errors.  

2.2 Assessment window 
In the FCAS verification tool, the “assessment window”, which is used to evaluate the fast FCAS delivery 

in contingency events, is defined as the six-second time interval starting from the “frequency disturbance 

time”. The frequency disturbance time is defined as the time at which local frequency falls or rises outside 

the NOFB [4] and is intended to be used as a local measurement proxy following the start of the relevant 

contingency event. This refers to “t=0” in the MASS. The frequency disturbance time has been discussed 

thoroughly in the first and second reports, whilst different approaches to determine frequency 

disturbance time were tested. Among all alternative methods to identify frequency disturbance time, the 

“RoCoF-based” method exhibits performance that is comparable with the “universal window” [2]. 

Ideally, the frequency disturbance time should be close to the contingency time, and the assessment 

window should adequately capture the response during the first six-second after the contingency. 

However, the definition of frequency disturbance time is not fully unambiguous, which under specific 

circumstances might even lead to verification errors. In fact, for the purpose of response verification, FCAS 

service providers are required to provide data that is around the frequency disturbance time (i.e., 5s 

before and 60s after contingency [3]) identified by AEMO. Whilst the contingency event time is somehow 

universal, the frequency disturbance is assessed locally, on the basis of its definition as the time at which 

the local frequency falls or rises outside the NOFB. However, in specific cases, e.g., when before the 

contingency the frequency fluctuates around the NOFB boundary, an application of this definition might 

lead to having a response verification assessment starting before the local contingency is detected (and 

thus before the device starts actually responding). An example is illustrated in Figure 2. It can be seen 

that, by applying the current definition, the frequency disturbance time might be considered as happening 

at 𝑡0, when the frequency crosses (even if just for one or two cycles) the NOFB for the first time, whilst 

the contingency that is detected locally actually happens around 𝑡𝐶  (this time is also intuitively closer to 

the actual contingency time). The frequency “hovers” and oscillates around the NOFB between 𝑡0 and 𝑡𝐶. 

Therefore, to properly verify the fast FCAS performance of the device, the assessment window should 

start at 𝑡𝐶, as this is the time when the device is indeed supposed to provide fast FCAS response. Thus, a 

more unambiguous definition of the frequency disturbance time is needed, so that it can be used as a 

local proxy for the contingency event time.  

To address this issue, and only for the purposes of the studies in this report, we propose a new definition 

of the assessment window, which starts at the local proxy contingency time (i.e., 𝑡𝐶) and end at 6s after 

𝑡𝐶. In this way, the assessment window should be able to more clearly capture the device’s response 

within the 6s after the contingency event.  
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Figure 2. Example of local frequency measurement of one NMI before, during and after contingency event 

In order to assess the impact of the assessment window on the verification error, we therefore consider 

the following methodologies to define the assessment window when calculating fast FCAS delivery: 

a. Defining the assessment window as the six-second window from the frequency disturbance time 

as currently defined and used in the FCAS verification tool.  

b. Defining the assessment window as the six-second window from the locally detected contingency, 

which is assessed through a heuristic method. This method is proposed in this report to properly 

capture the fast FCAS response of individual NMIs for the specific events considered here. 

In particular, we introduce the concept of “contingency event identifier”, to approximate the contingency 

event time using locally measured frequency.  

2.2.1 Contingency event identifier  
The concept of contingency event identifier is used to approximate the contingency event time using local 

measurements of the frequency. As mentioned above, in this report two events were studied. Based on 

the behaviour of the frequency measured at NMI-level for these events, and only for the purposes of this 

report, we proposed a heuristic rule to better identify the local proxy of the contingency event for these 

two particular events, that is, using a rolling window of 50ms to find the first recorded point when the 

frequency consistently lies outside the NOFB for at least 250ms. Once the contingency event is located in 

such a way, the frequency fluctuations prior to the contingency event are ignored, and the assessment 

window starts at the newly defined proxy of the contingency event time. It is worth noting that this was 

done only for the scope of this work and the specific events analysed and is not a general rule, as it highly 

depends on the characteristics of the contingency events and will be different for other events. In the 

context of this work, the proposed heuristic rule is only to provide an approximation of the contingency 
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event time based on the local measurement and to assess the numerical value of verification errors when 

considering contingency event time.  

2.3 Verification error 
The term verification error is used to measure the performance of potential verification configurations. 

The verification error indicates the relative difference of FCAS delivery when changing the underlying 

assumptions, e.g., sampling rate, frequency disturbance time, integration rule, etc. In this report, the 

benchmark is represented by the FCAS delivery (in kW ∙ s) calculated using 50ms data (the highest 

resolution available for the data provided) with the “universal window” method and trapezoid rule1.  

2.4 Further insights into error analysis via probabilistic assessment  
In this report, Monte Carlo simulation and probabilistic metrics are adopted to provide further insights 

into error analysis. Monte Carlo simulation is a mathematical technique that is used to estimate the 

possible outcomes and the outcomes’ distribution of single/compound uncertain events or stochastic 

processes that cannot be easily predicted due to the intervention of random variables. In Monte Carlo 

simulation, uncertain inputs in a model are represented using probability distributions or scenarios. 

During a Monte Carlo simulation, values are sampled randomly from the input probability distributions or 

scenarios. Each set of samples is called an iteration, and the resulting outcome from that sample is 

recorded. Then, Monte Carlo simulation repeats this process, and the result is a probability distribution 

of possible outcomes. In particular, specific metrics can be introduced to assess the likelihood of extreme 

events (e.g., worst and best cases) in probabilistic terms (e.g., by making use of percentiles and 

distribution tail analysis), besides expected values. Compared to single-point estimates (also called 

“deterministic” risk analysis) for, e.g., worst case, best case, and most likely case, Monte Carlo simulation 

provides more valuable information, as it does not only show what could happen but also show how likely 

it is to happen and the shape of the probability distribution. It is widely considered as a state-of-art 

methodology for risk analysis and is suitable to provide a better picture of possible verification errors 

given a certain dataset.  

Monte Carlo simulation has been used here to capture the uncertainty of device responses in different 

levels of aggregation. In fact, a VPP may contain a wide range of devices with similar or distinctive 

characteristics, which may lead to diverse verification errors. In this report, Monte Carlo simulations are 

conducted with 10,000 iterations2 to build the probability distribution functions of verification errors. The 

adopted Monte Carlo simulation process is shown in Figure 3. For each iteration, we randomly select 

NMI’s data from the entire dataset for the assessment, assuming each NMI is equally likely to be selected. 

We then calculate the fast FCAS delivery for individual NMI for the test case, i.e., using lower sampling 

rate (i.e., 100ms, 200ms, and 1s) data and “RoCoF-based” method, as well as for the benchmark, i.e., using 

50ms data and “universal window” method. In the next step, the fast FCAS delivery of each individual NMI 

 
1 It is worth noting that a small verification error does not necessarily indicate that the provider would have an 
acceptable performance in terms of FCAS delivery as recognised by AEMO, but rather that the fast FCAS delivery 
calculated with the given settings is close to the benchmark response (calculated with 50ms data, “universal 
window” method and trapezoid rule). 
2 An analysis on the accuracy level of the Monte Carlo simulation was carried out and the results showed that, with 
the datasets provided,10,000 iterations are generally sufficient to achieve satisfactory accuracy levels for a relatively 
large number of sites (e.g., 100 sites or more). For aggregations with fewer sites, i.e., less than 100 sites, more data 
and studies would generally be needed to identify the error distribution more robustly.  
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is summed up to calculate the aggregated fast FCAS delivery, for both test case and benchmark. Finally, 

the verification error is calculated in the form of percentage error, using the following formula: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =
𝐸−𝐸𝑏𝑎𝑠𝑒

𝐸𝑏𝑎𝑠𝑒
 *100 (1) 

where 𝐸  and 𝐸𝑏𝑎𝑠𝑒  is the aggregated fast FCAS delivery calculated for the test case and benchmark, 

respectively, whilst 𝑛 is the number of sites in the aggregation.  

 

Figure 3. Process of Monte Carlo simulation 

Monte Carlo simulation can also provide an estimate of the verification error confidence interval. In 

particular, besides the maximum and minimum value of the verification errors, percentile scores may also 

be used to measure, for example, the “risk” of having too high errors. The percentile score 𝑃𝑝% is a score 

below which falls a given percentage 𝑝 of scores in the distribution. For example, the 50th percentile (the 

median) is the score below which lie 50% of the samples in the distribution. Different percentile scores 

are used considering both the upper-tail and lower-tail of the distribution, e.g., 50th percentile (𝑃50%), 

2.5th/97.5th percentile ( 𝑃2.5%/𝑃97.5% ), 2th/98th percentile ( 𝑃2%/𝑃98% ), 1.5th/98.5th percentile 

(𝑃1.5%/𝑃98.5%), 1th/99th percentile (𝑃1%/𝑃99%). For example, we can assume that 95% of the verification 

errors fall between the 2.5th percentile score and 97.5th percentile score. Overall, different metrics may 

be considered together in order to have a better picture of the error distribution shape. 

2.5 Site aggregation 
In the VPP Demonstrations programme, AEMO verifies the performance of a VPP based on the aggregated 

response to delivery contingency FCAS during a frequency disturbance. The aggregators are required to 

measure frequency and power response at the relevant sites. As the clock associated with individual 

meters at the relevant sites may record slightly different times, the data is aligned with the frequency 

disturbance time, i.e., the time at which the local frequency falls or rises outside the NOFB. 

However, as indicated in section 2.1, using frequency disturbance times may create significant 

misalignment with the actual contingency time; hence, the aggregated response calculated according to 

the current FCAS assessment tool may not be representative of the actual response that the VPP fleet 
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provided after the contingency. Thus, the methodology for aggregating response profiles needs to be 

revisited.   

3 Case studies 
In this report, UoM was provided with high-speed (i.e., 50ms sampling rate) NMI-level data of over 1600 

sites for two events, namely, event 1 and event 23. The impact of site aggregation and sampling rate on 

the verification errors is carried out using the following methodologies to identify assessment windows: 

a. Defining the assessment window as the six-second window from the frequency disturbance time 

as currently defined.  

b. Defining the assessment window as the six-second window from the local proxy of the 

contingency event described above.   

Note that the time of contingency that is locally detected is only an estimation using the methodology 

that is proposed in 2.2.1 for the purpose of the analysis of this report. More work is needed to identify a 

methodology that could be generally applied to any event. The purpose of the local contingency identifier 

is to estimate the verification error when the assessment window is defined based on the local proxy of 

the contingency event. Monte Carlo simulation is used with 10,000 iterations to model the distribution of 

the verification errors. 

3.1 Verification errors  
In this section, the FCAS delivery verification errors for different numbers of aggregated sites and different 

sampling rates are analysed for two definitions of assessment window, i.e., the six-second window after 

the currently defined frequency disturbance time, and the six-second window after the contingency is 

locally detected using the proxy described above.  

3.1.1 Assessment window defined as six-second window after frequency disturbance time  
This section analyses the verification errors when using the frequency disturbance time to define the start 

of the six-second assessment window, which represents the methodology that is currently used in the 

FCAS verification tool. The fast FCAS delivery is calculated for 100ms and 200ms sampling rate, using the 

“RoCoF-based” method, for the two events. The benchmark is calculated using 50ms data and the 

“universal window” method. An analysis for 1s sampling rate was also performed, and the results are 

shown in the Appendix, Table 9-Table 10.  

The percentage errors for the event 1 using 100ms and 200ms sampling rate are illustrated in Table 1-

Table 2. The analysis is done for different numbers of aggregated sites. As main outcome, similar trends 

are observed in this case study and the previous report, i.e., the range of verification errors4 generally 

decreases when the number of sites in the aggregation increases. This is basically because, when 

considering a larger number of sites, when aggregating the FCAS delivery potential over-estimation and 

under-estimation of the error from individual NMI responses tend to cancel each other, leading to a 

narrower distribution.  

 
3 Event 1 refers to a 25 May 2021 event, while event 2 refers to a 25 August 2021 event. 
4 Note that the range of verification errors is not to be confused with the absolute value of average and/or mean of 
the verification errors. The range of verification errors refer to the distance between the upper tail and the lower 
tail of the errors.  
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It can be seen that the verification errors are substantial even for 100ms and 200ms sampling rates, and 

even when the number of sites increases to 1500 sites. However, these large errors may primarily be a 

result of the misalignment of the frequency disturbance time and contingency event time. Such 

misalignment is demonstrated with the example that is illustrated in Figure 4 and Figure 5.  

Table 1. Verification errors (%) for event 1, using 100ms sampling rate and using the current frequency disturbance time 
definition to define the assessment window 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -246965% 597148% 21.99% -506% 584% -623% 699% -810% 922% -1278% 1351% 

25 -57168% 31285% 32.01% -220% 374% -306% 444% -428% 562% -683% 801% 

50 -36379% 22895% 34.95% -39% 200% -54% 229% -87% 281% -165% 353% 

100 -1110% 1637% 35.95% -4.07% 114% -6.23% 120% -8.94% 130% -14.04% 149% 

200 -27.43% 214% 36.07% 8.08% 78.35% 6.99% 81.08% 5.28% 85.60% 3.24% 91.21% 

500 4.23% 87.73% 36.14% 18.18% 59.00% 17.22% 60.47% 16.25% 61.98% 14.64% 64.33% 

1000 8.39% 67.55% 35.98% 22.95% 51.25% 22.44% 52.32% 21.91% 53.36% 21.11% 54.52% 

1500 14.43% 61.98% 36.05% 25.45% 48.49% 25.05% 49.13% 24.31% 49.83% 23.48% 50.95% 

 

Table 2. Verification errors (%) for event 1, using 200ms sampling rate and using the current frequency disturbance time 
definition to define the assessment window 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -278701% 1014544% 44.61% -836% 1008% -1089% 1275% -1424% 1624% -2266% 2425% 

25 -75466% 118185% 56.19% -328% 614% -456% 719% -643% 928% -1164% 1274% 

50 -60704% 42791% 61.65% -60.32% 336% -82.85% 389% -128% 441% -251% 581% 

100 -2362% 8143% 63.29% -4.01% 193.79% -7.66% 207% -12.11% 227% -18.15% 255% 

200 -37.98% 452.33% 62.92% 16.60% 135.86% 13.96% 141% 10.60% 147% 6.71% 155% 

500 2.57% 147.46% 63.37% 32.46% 103.30% 31.31% 105% 29.71% 109% 27.17% 113% 

1000 20.48% 115.18% 63.29% 40.78% 89.67% 39.70% 90.84% 38.63% 92.67% 36.61% 95.39% 

1500 28.30% 111.22% 63.34% 45.11% 84.39% 44.37% 85.31% 43.45% 86.51% 41.79% 88.48% 
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From Figure 4 it can be seen that although similar frequency measurements are observed for 50ms and 

100ms sampling rates, the frequency disturbance time can vary even substantially when using different 

sampling rates. In fact, before the contingency happened, the frequency hovered and fluctuated around 

the NOFB for a few seconds. This creates about 1s misalignment in the frequency disturbance time for 

50ms and 100 sampling rates. The frequency measurements for the six-second assessment window for 

50ms sampling rate and 100ms sampling rate are shown in Figure 5. The devices only started responding 

when the local contingency was detected, which is close to 5s in the assessment window for 50ms 

sampling rate, as shown on the left of Figure 5. Under 50ms sampling rates, the majority of the response 

may thus be basically “missed”. On the other hand, with a 100ms sampling rate, the response may be 

partially captured. This example also shows how such large errors may really originate from the 

misalignment of the frequency disturbance and contingency times, rather than from other components 

of the methodology (e.g., the “RoCoF-based” method or trapezoid rule). Moreover, in this example, the 

50ms sampling does not lead to a more accurate result relative to a slower sampling rate, as most of the 

fast FCAS response would be missed due to the event time identification issue. This is somehow a paradox 

that again demonstrates that it may be inappropriate to use the current definition of the frequency 

disturbance time to identify the start point of the six-second assessment window when using local 

frequency measurement of individual NMI. Instead, a better-defined time of locally detected contingency 

should be used in order to capture more appropriately the actual device (and aggregated) response after 

the contingency occurs. For events like the one analysed here, some adjustments would need to be 

performed in any case to achieve this alignment between assessment window and actual contingency 

time, even for data captured at 50ms intervals. Moving forward, this process should be automated in 

some way.  

  

Figure 4. Example of local frequency measurement and identification of the frequency disturbance time of an NMI with 50ms 
and 100ms sampling rates, for event 1 
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Figure 5. Example of local frequency measurement for the six-second assessment window, with 50ms (left) and 100ms (right) 
sampling rates, for event 1 

The percentage errors for event 2 using 100ms and 200ms sampling rate are illustrated in Table 3 and 

Table 4, respectively. Similar trends as for the event 1 can be observed, i.e., the range of verification errors 

decreases when the number of sites increases. However, it can be seen that compared to the event 1 the 

verification errors decrease more substantially with the number of sites. This is, essentially, because for 

event 2 the frequency disturbance time is closer to the locally detected contingency, compared with event 

1. However, the errors are still very noticeable for the 200ms sampling rate, even when the number of 

sites increases to 1500 sites. The main reason why such verification errors are observed may be still be 

attributed the misalignment of the frequency disturbance time and locally detected contingency.  

Table 3. Verification errors (%) for event 2, using 100ms sampling rate and using the current frequency disturbance time 
definition to define the assessment window 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -11092% 1270% 5.70% -0.89% 21.65% -1.09% 22.90% -1.43% 24.97% -1.96% 28.03% 

25 -5.53% 39.01% 6.08% 1.13% 14.32% 0.92% 14.87% 0.62% 15.72% 0.29% 16.59% 

50 -0.55% 19.71% 6.19% 2.40% 11.52% 2.28% 11.83% 2.08% 12.19% 1.87% 12.69% 

100 1.60% 14.33% 6.26% 3.45% 9.82% 3.35% 10.03% 3.21% 10.25% 3.02% 10.61% 

200 2.26% 12.62% 6.33% 4.25% 8.74% 4.14% 8.87% 4.02% 9.08% 3.88% 9.26% 

500 3.37% 9.27% 6.34% 5.00% 7.82% 4.94% 7.90% 4.87% 7.97% 4.76% 8.10% 

1000 4.59% 8.32% 6.35% 5.37% 7.37% 5.31% 7.42% 5.26% 7.48% 5.19% 7.56% 

1500 4.81% 8.03% 6.35% 5.55% 7.18% 5.52% 7.21% 5.47% 7.27% 5.40% 7.34% 
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Table 4. Verification errors (%) for event 2, using 200ms sampling rate, and using the current frequency disturbance time 
definition to define the assessment window 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -75255% 1643% 14.46% 2.08% 37.99% 1.56% 39.93% 0.97% 42.12% 0.27% 46.76% 

25 0.60% 48.63% 14.67% 6.40% 26.59% 6.09% 27.30% 5.69% 28.16% 5.10% 29.59% 

50 3.67% 30.26% 14.76% 8.48% 22.58% 8.22% 22.97% 8.00% 23.41% 7.53% 24.39% 

100 6.44% 26.51% 14.82% 10.44% 20.16% 10.26% 20.42% 10.00% 20.74% 9.69% 21.24% 

200 8.05% 22.04% 14.83% 11.58% 18.56% 11.43% 18.76% 11.23% 18.97% 10.98% 19.30% 

500 10.47% 19.43% 14.86% 12.74% 17.13% 12.63% 17.21% 12.53% 17.34% 12.40% 17.55% 

1000 11.87% 17.75% 14.86% 13.37% 16.43% 13.30% 16.49% 13.22% 16.58% 13.14% 16.72% 

1500 12.15% 17.54% 14.86% 13.65% 16.16% 13.59% 16.22% 13.51% 16.32% 13.41% 16.41% 

 

An example of the misalignment of frequency disturbance time for 50ms and 100ms sampling rates is 

shown in Figure 6 and Figure 7. It can be seen that for event 2, the contingency event time is much closer 

to frequency disturbance time, compared with the event 1 that is illustrated in Figure 4. However, there 

is still a misalignment of frequency disturbance times when using different sampling rates, as 

demonstrated in Figure 6. This leads to relatively different six-second assessment windows when using 

50ms sampling rate and 100ms sampling rate, as seen in Figure 7. 

 

Figure 6. Example of local frequency measurement and identification of the frequency disturbance time of an NMI with 50ms and 
100ms sampling rates, for event 2 
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Figure 7. Example of local frequency measurement for the six-second assessment window, with 50ms (left) and 100ms (right) 
sampling rates, for event 2 

 

3.1.2 Assessment window defined as six-second after the local proxy of the contingency  
Instead of using the frequency disturbance time to define the start point of the six-second assessment 

window, a more accurate proxy for the contingency event time is sought here by using the proposed 

contingency event identifier methodology with the proposed heuristic rule for the two events that are 

analysed. The percentage errors for the two events using 100ms and 200ms data are illustrated in Table 

5-Table 8. The results for 1s sampling rate are illustrated in the Appendix, Table 11-Table 12.  

It can be seen that when using the proposed contingency event identifier methodology to define the start 

point of the six-second assessment window, the verification errors decrease dramatically. On the other 

hand, the same trend, i.e., when the number of sites in the aggregation increases the range of verification 

errors decreases, is still observed for both events.  It may be appreciated that when using the local proxy 

of contingency event time to define the start time of the assessment window, verification errors that are 

caused by the misalignment of the frequency disturbance time can be largely avoided. This further 

demonstrates the importance of a well-defined methodology to identify the local proxy of contingency 

event time, when making use of local data and the importance of implementing a robust methodology in 

the FCAS verification tool in order to adopt local measurements from individual NMIs. 
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Table 5. Verification errors (%) for event 1, using 100ms sampling rate and assessment window defined as six-second window 
after the local proxy of the contingency 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -17737% 19946% -0.48% -25.00% 25.84% -31.51% 32.03% -43.23% 41.63% -66.06% 65.89% 

25 -87163% 54340% -0.43% -20.72% 21.12% -25.55% 26.63% -34.25% 33.69% -51.82% 49.36% 

50 -96567% 25628% -0.34% -14.92% 14.24% -18.30% 17.45% -24.09% 22.83% -36.24% 35.71% 

100 -712% 12054% -0.29% -6.36% 7.38% -7.82% 8.99% -10.21% 11.37% -15.21% 16.00% 

200 -4024% 382% -0.27% -2.73% 3.07% -2.97% 3.50% -3.34% 4.36% -4.12% 5.80% 

500 -27.12% 475% -0.27% -1.48% 1.14% -1.56% 1.25% -1.67% 1.40% -1.80% 1.58% 

1000 -2.03% 3.61% -0.27% -1.08% 0.61% -1.13% 0.67% -1.19% 0.73% -1.26% 0.81% 

1500 -1.68% 1.56% -0.27% -0.95% 0.43% -0.98% 0.47% -1.04% 0.53% -1.08% 0.60% 

 

Table 6. Verification errors (%) for event 1, using 200ms sampling rate and assessment window defined as six-second window 
after the local proxy of the contingency  

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -27227% 34579% -0.49% -51.11% 59.56% -62.34% 73.05% -83.76% 96.69% -130% 148% 

25 -49285% 365840% -0.40% -44.44% 42.15% -55.16% 53.54% -75.47% 72.34% -112.53% 110.97% 

50 -324536% 23330 % -0.19% -30.32% 28.85% -37.53% 34.60% -50.26% 44.89% -77.07% 71.48% 

100 -2744% 20612% -0.10% -13.24% 15.59% -16.00% 19.33% -21.00% 24.40% -30.85% 34.77% 

200 -353% 3540% -0.09% -5.47% 6.75% -6.05% 7.70% -7.08% 9.24% -8.86% 12.73% 

500 -23.65% 458.49% -0.07% -2.66% 2.96% -2.81% 3.20% -2.97% 3.46% -3.30% 3.87% 

1000 -4.88% 4.28% -0.07% -1.83% 1.79% -1.92% 1.89% -2.05% 2.06% -2.22% 2.24% 

1500 -3.51% 4.00% -0.08% -1.47% 1.41% -1.54% 1.49% -1.63% 1.59% -1.75% 1.75% 
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Table 7. Verification errors (%) for event 2, using 100ms sampling rate and assessment window defined as six-second window 
after the local proxy of the contingency  

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -116% 43.25% -0.69% -2.40% 1.11% -2.50% 1.22% -2.63% 1.42% -2.85% 1.70% 

25 -3.49% 2.12% -0.69% -1.68% 0.36% -1.74% 0.42% -1.79% 0.50% -1.89% 0.64% 

50 -2.34% 0.81% -0.69% -1.39% 0.05% -1.43% 0.08% -1.47% 0.13% -1.53% 0.22% 

100 -1.68% 0.56% -0.69% -1.18% -0.18% -1.21% -0.15% -1.23% -0.13% -1.27% -0.09% 

200 -1.34% 0.06% -0.69% -1.03% -0.33% -1.05% -0.31% -1.07% -0.29% -1.10% -0.26% 

500 -1.12% -0.24% -0.69% -0.91% -0.47% -0.92% -0.45% -0.93% -0.44% -0.95% -0.42% 

1000 -0.98% -0.35% -0.69% -0.84% -0.53% -0.85% -0.52% -0.86% -0.51% -0.87% -0.50% 

1500 -0.93% -0.45% -0.69% -0.82% -0.56% -0.82% -0.56% -0.83% -0.55% -0.84% -0.54% 

 

Table 8. Verification errors (%) for event 2, using 200ms sampling rate, and assessment window defined as six-second window 
after the local proxy of the contingency  

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -124% 114% -0.89% -4.69% 2.80% -4.96% 3.06% -5.36% 3.41% -5.88% 3.97% 

25 -7.26% 7.46% -0.89% -3.17% 1.37% -3.27% 1.52% -3.45% 1.69% -3.73% 1.93% 

50 -4.70% 3.00% -0.89% -2.47% 0.67% -2.56% 0.75% -2.66% 0.88% -2.79% 1.01% 

100 -3.36% 1.43% -0.88% -1.98% 0.21% -2.04% 0.27% -2.10% 0.34% -2.19% 0.44% 

200 -2.77% 0.87% -0.89% -1.67% -0.11% -1.70% -0.08% -1.74% -0.03% -1.81% 0.04% 

500 -2.01% 0.17% -0.88% -1.37% -0.39% -1.39% -0.36% -1.42% -0.34% -1.46% -0.30% 

1000 -1.62% -0.23% -0.89% -1.22% -0.54% -1.24% -0.53% -1.26% -0.50% -1.29% -0.47% 

1500 -1.46% -0.33% -0.88% -1.16% -0.60% -1.18% -0.59% -1.20% -0.57% -1.22% -0.55% 
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4 Conclusions  
In the context of the consultations on the amendment of the MASS, further studies on the impact of site 

aggregation on the fast FCAS verification errors were performed in this report based on a new dataset 

provided. The main outcomes of the analysis can be summarised as follows.  

- Similar trends as in the previous report may be observed [2], i.e., the range of verification errors 

decreases when increasing the sampling rate and the number of sites in the aggregation.  

- From the analysis of the two events analysed, it emerged that the definition of “disturbance time” 

used in the current methodology may need to be revisited, in order to be better aligned with the 

actual time of local contingency detection (which is when the device is supposed to start 

responding). In fact, particularly in one of the two events analysed, the frequency was found to 

be “hovering” and oscillating around the normal operating frequency band (NOFB) for a few 

seconds prior to the actual contingency event detection. By applying the current definitions and 

without a local proxy of the contingency event time, which would require some adjustments even 

for data captured at 50ms intervals, the relevant frequency measurements might create a 

misalignment between the frequency disturbance time as currently defined and the actual 

contingency event time as locally detected.  

- In particular, when determining the assessment window in line with the requirements of the 

MASS, the current definition of the frequency disturbance time without a local proxy to identify 

the contingency event time may create relatively large errors even for relatively high sampling 

rates (e.g., 100ms and 200ms). It appears that this may be again essentially due to a misalignment 

of the defined frequency disturbance time and the time when the contingency event is actually 

locally detected.   

- A local proxy of the contingency event time should be properly defined and implemented in the 

FCAS verification tool, to better represent the whole VPP’s performance in the six-second window 

after the locally identified contingency event. This is because the local devices making up the VPP 

aggregate should provide response only when the contingency is locally detected, which may be 

different for devices at different locations. If such a local proxy of the contingency event can be 

well identified, the verification errors may decrease significantly. 

- In this report, we have used a heuristic approach to define such a proxy, which we called 

“contingency time identifier”. However, this should be considered only for the purposes of this 

work, and more and systematic work is required to develop a robust methodology to identify the 

local proxy of the contingency event. 

- Considering all the datasets analysed and the three studies performed so far, it appears that 

higher sampling rates and larger number of sites may significantly decrease verification errors. 

However, it also emerges that the specific numerical impact of these two factors is event-specific 

and may also depend on the type of devices and their response characteristics. It is therefore 

advised that the results of this work should be revisited at a later stage as “work in progress”, 

possibly using a wide range of several datasets for different contingency events, technologies, 

locations, etc. This applies to all levels of aggregation, and is particularly true for VPPs that have 

a relatively small number of sites (e.g., less than 100 sites), for which more data and studies are 

required to come up with more robust results. 

  



19 

5 References 
[1] P. Mancarella, L. Zhang, and H. Wang, “Fast FCAS Sampling Verification in Support of Market 

Ancillary Services Specification ( MASS ) consultation,” 2021. 

[2] L. Zhang, H. Wang, and P. Mancarella, “Fast FCAS Sampling Verification in Support of Market 
Ancillary Services Specification ( MASS ) consultation - Phase 2,” 2021. 

[3] Australian Energy Market Operator (AEMO), “Market Ancillary Service Specification v6.0,” 2020. 

[4] Australian Energy Market Operator (AEMO), “FCAS Verification Tool User Guide,” 2020. 

 

  



20 

Appendix – 1s sampling rate studies 

Assessment window defined according to the current definition of frequency disturbance time  

Table 9. Verification errors (%) for event 1, using 1s sampling rate and using the current frequency disturbance time definition to 
define the assessment window 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -500025% 717912% 78.38% -1645% 1839% -2142% 2321% -2786% 3180% -4450% 4926% 

25 -221944% 86681% 96.19% -593% 1023% -767% 1197% -1035% 1490% -1612% 2038% 

50 -80670% 61915% 101.93% -147% 552% -197% 612% -275% 747% -432% 918% 

100 -3617% 5101% 105.77% -21.49% 324.09% -29.20% 349% -38.40% 383% -53.72% 432% 

200 -118% 741% 104.88% 16.53% 224.76% 11.10% 235% 6.22% 245% -1.58% 262% 

500 -5.46% 288% 104.64% 49.89% 172.66% 47.15% 177% 44.37% 181% 39.43% 188% 

1000 32.28% 192% 105.16% 65.38% 149.53% 63.63% 152% 61.75% 155% 58.53% 160% 

1500 41.73% 190% 105.07% 72.87% 140.70% 71.60% 143% 69.98% 146% 67.60% 149% 

 

Table 10. Verification errors (%) for event 2, using 1s sampling rate and using the current frequency disturbance time definition to 
define the assessment window 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -71948% 3815% 32.51% 10.93% 73.96% 10.15% 78.42% 8.54% 84.63% 7.01% 93.79% 

25 6.96% 88.30% 32.59% 18.21% 52.78% 17.57% 53.94% 16.91% 55.41% 15.69% 57.48% 

50 11.96% 64.95% 32.48% 22.24% 45.60% 21.80% 46.40% 21.41% 47.45% 20.58% 48.61% 

100 18.65% 51.49% 32.45% 24.88% 41.32% 24.49% 41.76% 24.17% 42.34% 23.65% 43.16% 

200 22.25% 47.71% 32.42% 27.05% 38.53% 26.80% 38.80% 26.46% 39.30% 26.09% 39.82% 

500 25.75% 38.90% 32.38% 28.89% 36.15% 28.72% 36.32% 28.50% 36.54% 28.21% 36.86% 

1000 27.78% 38.60% 32.36% 29.91% 34.99% 29.80% 35.13% 29.66% 35.27% 29.45% 35.48% 

1500 28.46% 37.61% 32.38% 30.36% 34.54% 30.27% 34.63% 30.14% 34.75% 29.97% 34.93% 
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Assessment window defined via identification of a local proxy of the contingency time 

Table 11. Verification errors (%) for event 1, using 1s sampling rate and assessment window defined as six-second window after 
the local proxy of the contingency 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

𝑃2.5% 𝑃97.5% 𝑃2% 𝑃98% 𝑃1.5% 𝑃98.5% 𝑃1% 𝑃99% 

10 -386612% 1009986% 3.25% -371% 408% -475% 507% -658% 674% -984% 1017% 

25 -111033% 832135% 12.41% -404% 369% -517% 467% -651% 634% -976% 966% 

50 -95334% 2146751% 20.17% -317% 370% -411% 460% -576% 576% -858% 840% 

100 -275278% 50647% 25.53% -154% 263% -217% 312% -324% 421% -526% 568% 

200 -155097% 247470% 27.46% 4.43% 144.09% 3.44% 166.22% 2.14% 196% -0.76% 260% 

500 -15842% 2114% 28.04% 12.06% 68.85% 11.63% 72.61% 10.96% 77.62% 10.10% 86.31% 

1000 7.36% 127.27% 28.13% 15.79% 50.27% 15.37% 51.75% 14.89% 53.67% 14.04% 56.39% 

1500 10.45% 74.84% 28.03% 17.65% 44.83% 17.22% 46.13% 16.75% 47.40% 16.06% 49.14% 

 

Table 12. Verification errors (%) for event 2, using 1s sampling rate and assessment window defined as six-second window after 
the local proxy of the contingency 

No of sites Min Max Median 

2.5/97.5 Percentile 2/98 Percentile 1.5/98.5 Percentile 1/99 Percentile 

P2.5% P97.5% P2% P98% P1.5% P98.5% P1% P99% 

10 -258% 324% -1.91% -15.35% 13.99% -16.21% 14.83% -17.34% 16.46% -18.80% 18.27% 

25 -20.57% 28.46% -1.91% -10.03% 6.92% -10.45% 7.48% -11.02% 8.02% -11.74% 8.87% 

50 -14.80% 10.36% -1.88% -7.61% 4.14% -7.91% 4.46% -8.22% 4.80% -8.71% 5.44% 

100 -9.93% 7.59% -1.89% -5.96% 2.35% -6.18% 2.56% -6.41% 2.87% -6.72% 3.20% 

200 -7.49% 4.14% -1.88% -4.75% 1.05% -4.90% 1.20% -5.08% 1.35% -5.33% 1.56% 

500 -6.50% 1.92% -1.88% -3.75% -0.06% -3.84% 0.03% -3.96% 0.14% -4.12% 0.28% 

1000 -4.72% 0.99% -1.88% -3.19% -0.58% -3.25% -0.52% -3.33% -0.46% -3.41% -0.35% 

1500 -4.07% 0.08% -1.88% -2.93% -0.83% -2.99% -0.78% -3.05% -0.71% -3.14% -0.62% 
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