

MEDIUM TERM PASA PROCESS DESCRIPTION

PREPARED BY: Forecasting & Planning

DOCUMENT REF: 42

VERSION: 5.1

EFFECTIVE DATE: 10 May 2018

FINAL

Australian Energy Market Operator Ltd ABN 94 072 010 327

NEW SOUTH WALES QUEENSLAND SOUTH AUSTRALIA VICTORIA AUSTRALIAN CAPITAL TERRITORY TASMANIA WESTERN AUSTRALIA

www.aemo.com.au

info@aemo.com.au

Disclaimer

Purpose

This report has been prepared by the Australian Energy Market Operator Limited (**AEMO**) for the sole purpose of meeting obligations in accordance with clause 3.7.2(g) of the National Electricity Rules.

No reliance or warranty

This report contains data provided by third parties and might contain conclusions or forecasts and the like that rely on that data. This data might not be free from errors or omissions. While AEMO has used due care and skill, AEMO does not warrant or represent that the data, conclusions, forecasts or other information in this report are accurate, reliable, complete or current or that they are suitable for particular purposes. You should verify and check the accuracy, completeness, reliability and suitability of this report for any use to which you intend to put it, and seek independent expert advice before using it, or any information contained in it.

Limitation of liability

To the extent permitted by law, AEMO and its advisers, consultants and other contributors to this report (or their respective associated companies, businesses, partners, directors, officers or employees) shall not be liable for any errors, omissions, defects or misrepresentations in the information contained in this report, or for any loss or damage suffered by persons who use or rely on such information (including by reason of negligence, negligent misstatement or otherwise). If any law prohibits the exclusion of such liability, AEMO's liability is limited, at AEMO's option, to the re-supply of the information, provided that this limitation is permitted by law and is fair and reasonable.

©2006 Australian Energy Market Operator Ltd. All rights reserved

Glossary

ABBREVIATION	ABBREVIATION EXPLANATION	
AEMO	Australian Energy Market Operator	
ASEFS	Australian Solar Energy Forecasting System	
AWEFS	Australian Wind Energy Forecasting System	
ESOO	Electricity Statement of Opportunities	
LP	Linear Program	
LRC	Low Reserve Condition	
MMS	Electricity Market Management System	
NEM	National Electricity Market	
NEFR	National Electricity Forecasting Report	
Rules	National Electricity Rules (the Rules)	
PASA	Projected Assessment of System Adequacy	
	 ST PASA: Short term projected assessment of system adequacy MT PASA: Medium term projected assessment of system adequacy 	

POE	Probability of Exceedance	
RHS	Right Hand Side of a constraint equation	
Timetable	Spot Market Operations Timetable	
UIGF	Unconstrained Intermittent Generation Forecast	
USE	Unserved Energy	

Contents

1	Introduction 6			
2	MT PASA process and Rules requirements7			
3	MT PASA Inputs			
3.1	Market participant inputs			
3.1.1 3.1.2	Generating unit availabilities for MT PASA			
3.2	AEMO inputs			
3.2.1 3.2.2	Plant availabilities for MT PASA			
3.2.3	Power transfer capabilities used in MT PASA			
4	MT PASA Solution Process			
4.1	NEM Representation			
4.2	Overview of Modelling Approach			
4.3	MT PASA Reliability Run			
4.4	MT PASA Loss of Load Probability (LOLP) Run			
4.5	Comparison of Model Features			
5	MT PASA Outputs19			
Append	Appendix A: MT PASA Process Architecture21			
Append	Appendix B: Medium Term Demand Forecasting Process			
Appendix C: Pain Sharing27				
Appendix D: Calculation of Transfer Limits28				
Appendix E: Graphical Outputs29				
Appendix F: MT PASA Output Tables				
Append	lix G: "Plain English" Report on Constraints36			

Version Release History

VERSION	DATE	BY	CHANGES	
1.0	27/04/2006	SOPP	Initial version	
2.0	22/03/2013	Systems Capability	Review document to reflect current processes	
3.0	30/05/2013	Systems Capability	Updated Sections 4, 5 and Appendix E to include new run type RELIABILITY_MSR_MUR, reporting of MaxUsefulResponse (MUR) and four new run types associated with interconnector capability reporting.	
4.0	25/11/2016	Forecasting & Planning	Review document to reflect current processes	
4.1	08/06/2017	Supply Planning	Amended document to reflect new MT PASA solution using probabilistic modelling to take effect from November 2017.	
5.0	15/08/2017	Supply Planning	Amended document to reflect new LOLP methodology, include further details on Reliability Run modelling of energy limits, and updated visualisations.	
5.1	07/05/2017	Forecasting	Minor amendments to reflect slight changes to methodology made during redevelopment.	

1 Introduction

The National Electricity Rules (the *Rules*) clause 3.7.1 requires the Australian Energy Market Operator (AEMO) to administer the *projected assessment of system adequacy (PASA)* processes.

The *PASA* is the principal method for indicating to the National Electricity Market (NEM) the forecast adequacy of power system security and supply reliability over the next two years. The *Rules* require AEMO to administer the *PASA* over two timeframes:

- 1. *Medium Term PASA* (MT PASA): this assessment covers the 24-month period starting from the first Sunday after publication. It is updated and published weekly to a daily resolution.
- 2. Short Term PASA (ST PASA): this assessment covers the six *trading days* starting from the end of the *trading day* covered by the most recently *published pre-dispatch schedule*. It is updated and published every two hours to a *trading interval* resolution.

MT PASA assesses *power system security* and *reliability* under a minimum of 10% Probability of Exceedance (POE) and 50% POE demand conditions based on generator availabilities submitted by *market participants*, with due consideration to planned transmission and relevant distribution outages and limits¹. The *reliability standard* is a measure of the effectiveness, or sufficiency, of installed capacity to meet demand. It is defined in clause 3.9.3C of the Rules as the maximum expected *unserved energy* (USE) in a *region* of 0.002% of the total *energy* demanded in that region for a given *financial year*. USE is measured in gigawatt hours (GWh).

The MT PASA process includes (but is not limited to):

- Information collection from Scheduled Generators, Market Customers, Transmission Network Service Providers and Market Network Service Providers about their intentions (as appropriate) for:
 - o Generation, transmission and market network service maintenance scheduling.
 - o Intended plant availabilities.
 - Energy Constraints.
 - Other plant conditions which could materially impact upon power system security and the reliability of supply.
 - o Significant changes to load forecasts.
- Analysis of medium-term power system security and reliability of supply.
- Forecasts of supply and demand.
- Provision of information that allows participants to make decisions about supply, demand and outages of transmission networks for the upcoming two-year period.
- Publication of sufficient information to allow the market to operate effectively with a minimal amount of intervention by AEMO.

The MT PASA process is administered according to the timeline set out in the Spot Market Operations Timetable² (*timetable*) in accordance with the *Rules*.

This document fulfils AEMO's obligation under clause 3.7.2(g) of the *Rules* to document the procedure used in administering the MT PASA.

¹ Constraints will be invoked on embedded generators connected to the DNSP network when there is an impact on TNSP equipment. When there is no impact on the TNSP network, constraints will not be applied. DNSPs should coordinate with generators and the generators should reflect the MW availability accordingly. For further information see

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Power_System_Ops/Procedures/SO_OP_3718---Outage-Assessment.pdf

² http://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Dispatch/Spot-Market-Operations-Timetable.pdf

2 MT PASA process and Rules requirements

The PASA is a comprehensive program for collecting and analysing information to assess mediumand short-term power system security and reliability of supply prospects. This is so that *Registered Participants* are properly informed to enable them to make decisions about *supply*, demand and *outages* of *transmission networks* for periods up to two years in advance. MT PASA assesses the adequacy of expected electricity supply to meet demand across the two-year horizon through regularly identifying and quantifying any projected failure to meet the *reliability standard*.

MT PASA incorporates two separate functions:

- 1. A high frequency three-hourly information service that gives a regional breakdown of the supply situation over the two-year horizon, taking into account participant submissions on availability.
- 2. A weekly assessment of system reliability, including provision of information on demand, supply and network conditions.

AEMO must review and *publish* the MT PASA outputs in accordance with the frequency specified in clause 3.7.2(a), covering the 24-month period starting from the Sunday after *day* of publication with a daily resolution. Additional updated versions of MT PASA may be published by AEMO in the event of *changes* which, in the judgement of AEMO, are materially significant and should be communicated to *Registered Participants*.

Each party's responsibilities in preparing MT PASA (summarised in Table 1 below) are also defined in this clause.

Responsible Party	Action	Rules Requirement
AEMO	 Prepare following MT PASA inputs: Regional demand forecasts - 10% POE and most probable daily peak load (50% POE) Network constraints forecasts Unconstrained intermittent generation forecasts for semi-scheduled generating unit 	3.7.2(c)
Scheduled Generator or Market Participant	 Submit to AEMO the following MT PASA inputs: PASA availability of each scheduled generating unit, scheduled load or scheduled network service Weekly energy constraints applying to each scheduled generating unit or scheduled load 	3.7.2(d)
Network Service Providers	 Provide AEMO the following information: Outline of planned <i>network outages</i> Any other information on planned <i>network outages</i> that is reasonably requested by AEMO 	3.7.2(e)
AEMO	Prepare and publish the MT PASA outputs	3.7.2(f)

Table 1: Rules requirements

3 MT PASA Inputs

Inputs used in the MT PASA process are provided by AEMO and *market participants*. They are discussed in detail below.

3.1 Market participant inputs

Market participants and *Scheduled Generators* are required to submit the following data in accordance with the *timetable*, covering a 24-month period from the Sunday after the *day* of publication of MT PASA.

3.1.1 Generating unit availabilities for MT PASA

• Generating unit PASA availabilities:

MT PASA uses PASA availabilities of generating units. PASA availability includes the generating capacity in service as well as the generating capacity that can be delivered with 24 hours' notice.

• As per clause 3.7.2(d)(1), *Generators* are required to provide the expected daily MW capacity of each *scheduled generating unit* or *scheduled load* for the next two years. The actual level of *generation* available at any particular time will depend on the condition of the generating plant, which includes factors such as age, outages, and wear. Another important factor with respect to output is the reduction in thermal efficiency with increasing temperature.

Generators should take into account the ambient weather conditions expected at the time when the Region where the generating unit is located experiences the 10% Probability of Exceedance (POE) *peak load*.

• Generating unit energy availabilities:

Generating plant such as hydroelectric power stations cannot generally operate at maximum capacity indefinitely because their energy source may become exhausted. Gas and coal plants can have energy constraints due to contracted fuel arrangements or emissions restrictions. Under clause 3.7.2(d)(2), scheduled generating units with a weekly energy constraint (referred to as energy constrained plant) are required to submit that weekly energy limit in MWh for all relevant weeks over the upcoming 24-month period commencing from the first Sunday after the latest MT PASA run.

AEMO may also use other information available such as that provided through the Generator Energy Limitation Framework (GELF) or generator surveys to develop daily, monthly, annual and/or biennial energy constraints for MT PASA modelling. Ideally, these energy limits are provided for a two and a half year period on the basis that AEMO would be seeking an update every six months.

The energy limits should be determined by generators, taking into account:

- The potential for fuel stockpiles or water storages to fluctuate in the short term.
- The generator's capability to replenish stockpiles and storages if depletion occurs.
- Wind turbine and large-scale solar availabilities:

To help AEMO fulfil its obligation under clause 3.7.2(c)(4), participants who operate such units are required to submit local limit information on their wind turbine or solar availability to AEMO. This information is used to augment historical generation data, to develop *unconstrained intermittent generation forecasts*. Further details are provided in section 3.2.1.

3.1.2 Network outages and Interconnector availabilities

Under clause 3.7.2(e), *Network Service Providers* must provide AEMO with an outline of planned *network outages* and any other information on planned *network outages* reasonably requested by AEMO. This includes interconnector availability information (e.g. Basslink). The planned *network outages* are converted into *network constraints* by *AEMO*. This process is further discussed in Section 3.2.3.

3.2 AEMO inputs

3.2.1 Plant availabilities for MT PASA

AEMO prepares other plant availability data, not provided by market participants:

• Semi-scheduled wind and solar generation forecasts:

AEMO is required to produce an *unconstrained intermittent generation forecast* (UIGF) for each *semi-scheduled generating unit* for each *day* in accordance with clause 3.7.2(c)(4).

AEMO develops the UIGF using historically-observed generation outputs for wind and solar units for at least five reference years. These outputs reflect the weather conditions that underlie the demand traces for those reference years, ensuring that any correlation between intermittent generation and demand is preserved.

• Non-scheduled generation forecasts:

In accordance with clause 3.7.2(f)(2), AEMO is required to prepare and *publish* the aggregated MW allowance (if any) to be made by AEMO for *generation* from *non-scheduled generating systems*.

The non-scheduled generation profiles have two parts: large non-scheduled wind and solar generation and other small non-scheduled generation. The large non-scheduled wind and solar generation forecasts are calculated based on historically-observed generation outputs over at least five reference years, while the other small non-scheduled generation forecasts are consistent with figures published in the National Electricity Forecasting Report (NEFR)³.

The small non-scheduled generation forecasts for units under 30MW are used as an input to the MT PASA operational demand forecasting process and are not modelled explicitly.

• Demand Side Participation (DSP):

DSP includes all short-term reductions in demand in response to temporary price increases (in the case of retailers and customers) or adverse network loading conditions (in the case of networks). An organised, aggregated response may also be possible. From the transmission network perspective, consumers may effectively reduce demand by turning off electricity-using equipment or starting up on-site generators.

MT PASA uses the NEFR's seasonal medium growth reliability response forecasts for demand side participation estimates in the form of five different price-quantity bands.

• Future generation:

Committed generation projects currently under development with a dispatch type of scheduled, semi-scheduled or large non-scheduled⁴ are also modelled in MT PASA.

Before the unit is registered, PASA availability for a committed scheduled generating unit is estimated based on participant information regarding the commercial use date and seasonal capacity. The Generator information page reports this information⁵.

 ³ http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Electricity-Forecasting-Insights
 ⁴ At early stages of the commitment process, units greater than 30 MW are likely to be modelled as scheduled or semi-scheduled. Closer to registration, they might apply for non-scheduled status.

⁵ http://aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Generation-information

The unit is entered into a Future Generation table that is referenced during modelling to include all "committed but not registered" units. Once the unit is registered, it is removed from the Future Generation table.

In the case of scheduled generators, the *Generator* that owns the unit is then responsible for submitting MT PASA unit offer data to AEMO.

In the case of semi-scheduled generators and large non-scheduled generators, AEMO applies availability traces for the unit for use in modelling, developed through either:

- Using a "shadow generator" based on existing intermittent generation of a similar technology type in close proximity; or
- Using meteorological data for the generation site, and assuming an energy conversion model based on a similar technology type.

3.2.2 Demand forecasts

AEMO develops a range of demand forecasts for MT PASA that are used for both modelling and reporting obligations. Table 2 shows the definitions of the different types of demand that are referenced in this document.

For a more detailed explanation of the calculation of demand forecasts, please consult Appendix B.

Demand Type	Definition	Description	
Underlying	Customer consumption	Consumption on premises ("behind the meter") including demand supplied by rooftop PV and battery storage.	
Delivered	Underlying – PV – battery	The energy the consumer (either residential or business) withdraws from the electricity grid.	
Native	Delivered + (network losses)	Total generation fed into the electricity grid. May be specified as "sent-out" (auxiliary load excluded) or "as- generated" (auxiliary load included). Includes both transmission and distribution losses.	
Operational "sent-out"	Native – Small Non-Scheduled ("as sent out")	Demand met by generation "as sent out" by scheduled / semi-scheduled / large non-scheduled generators.	
Operational "as generated"	Operational "as sent out" + auxiliary loads	Demand met by generation "as generated" by scheduled / semi-scheduled / large non-scheduled generators including demand on generator premises (auxiliary load).	
Intermittent	Intermittent generation	Demand met by semi-scheduled and large non-schedule generators. This is a non-standard demand definition used for LOLP modelling.	
Operational "ex intermittent"	Operational "sent out" - Intermittent	Demand met by scheduled generators. This is a non- standard demand definition used for LOLP modelling.	
Non-scheduled	Large + Small Non-Scheduled	Demand met by large and small non-scheduled generators, including non-intermittent generators e.g. Yarwun	
Large Non-scheduled	Also referred to as Significant Non-Scheduled	 Large non-scheduled generators include: Wind or solar generators >=30 MW Generators classified as non-scheduled but treated as scheduled generators in dispatch. Generators required when modelling network constraints Other generators impacting the NEM 	
Small Non-Scheduled	Also referred to as Non- Significant Non-Scheduled	Demand met by small non-scheduled generators (SNSC that are either connected to the distribution network or embedded behind the meter. SNSG includes PV installations above 100kW and below 30 MW, small sca wind power, hydro power, gas or biomass based cogeneration, landfill gas, wastewater treatment plants, smaller peaking plants and emergency backup generators.	

Table 2: AEMO Demand Definitions

MT PASA demand forecasts are summarised and the specific demand requirements for each of the two modelling runs are discussed in further detail below. Daily demand forecasts provided for reporting purposes only, are discussed further in Appendix B:

MT PASA Modelling:

- Annual operational "sent-out" demand profiles, consisting of half-hourly demand values, with energy consumption and maximum demand aligned with the NEFR sent-out forecasts. (Reliability Run).
- Abstract operational demand and intermittent generation forecasts constructed, based on the evaluation of the years of historical observations. The traces represent conditions of high demand levels occurring coincidentally with low intermittent generation output and are abstract since these conditions are assumed every day (LOLP Run).

MT PASA Reporting - Clause 3.7.2(f)(1) - (4):

- Daily peak 10% POE and 50% POE demand met by scheduled and semi-scheduled generators (clause 3.7.2(f)(1))⁶, non-scheduled allowance (clause 3.7.2(f)(2)), and native demand (clause 3.7.2(f)(3)), aligned with NEFR forecasts.
- Weekly 50% POE energy consumption (clause 3.7.2(f)(4)).

Reliability Run

The annual operational "sent-out" demand profiles used in MT PASA modelling identify and quantify any projected breach of the *reliability standard*. For this purpose, both maximum demand and energy consumption are important to capture, and the profile is developed considering past trends, day of the week and public holidays. Auxiliary load is calculated directly in the modelling, based on assumed auxiliary load scaling factors for each generator.

The actual demand differs from forecast, mainly due to weather. Statistically, it can be assumed that the forecast error follows a normal distribution. Accordingly, a forecast can be qualified by the probability that actual demand will exceed forecast demand or POE:

- A 10% POE forecast indicates a 10% chance that actual demand will exceed the forecast value over the relevant period (i.e. peak demand will be exceeded once in 10 years).
- A 50% POE forecast indicates a 50% chance that actual demand will exceed the forecast value over the relevant period.

The timing and regional spread of these weather events also impacts on demand – hot weather in a single region on a weekend will impact demand (and potentially reliability) differently than a heat wave that has been building for days with impact felt across multiple regions.

To capture the impact of weather variations on demand, at least ten different annual demand profiles (corresponding to model cases discussed in Section 4.3) are developed for each region, based on different historic weather patterns and POE annual peak demand forecasts. While this captures a reasonable range of different weather-driven demand conditions, it unavoidably requires assumptions to be made about precisely when the annual peak demand could occur, based on historical demand patterns, even though it is impossible to predict when the annual peak demand will occur in future.

Loss of Load Probability Run

Appropriate timing of maintenance scheduling can reduce the likelihood of unserved energy in times of high demand. Consequently, it is important that AEMO also considers the loss of load probability in each period of the modelling horizon, assuming weather conditions resulting in a

⁶ Note, this is not the same as operational demand as it excludes both large and small non-scheduled generation

combination of high demand and low intermittent generation were to occur in that specific period, to help guide outage scheduling.

The LOLP demand and intermittent generation modelling traces are based on high demand and low intermittent generation conditions observed over the different reference years, assessed on a month-by-month basis for each day of the week. The traces can be classed as "abstract" since each day is considered independently of the next, assuming close to monthly 10% POE weather conditions occurring each day. Summing daily energy consumption will not produce realistic annual energy consumption forecasts. Each region is considered independently.

3.2.3 Power transfer capabilities used in MT PASA

For MT PASA, AEMO is required to forecast *network constraints* known to AEMO at the time, under clause 3.7.2(c)(3).

Network constraints used in MT PASA represent technical limits on operating the power system. These limits are expressed as a linear combination of generation and interconnectors, which are constrained to be less than, equal to or greater than a certain limit.

Information to formulate *network constraint equations* is provided to AEMO by Transmission Network Service Providers (TNSPs) via Network Outage Scheduler (NOS)⁷ and limit advice. The process of producing *network constraint equations* is detailed in the Constraint Formulation Guidelines⁸. Within AEMO's market systems, *constraint equations* are marked as system normal if they apply to all plant in service. To model network or plant outages in the power system, separate outage *constraint equations* are formulated and applied with system normal *constraint equations*.

AEMO continues to update and refine *network constraints* through its ongoing modelling projects. MT PASA uses the latest version of ST PASA formulation constraints as a starting base, with additional customised *network* constraints associated with future planned *network* and generation upgrades. AEMO constructs system normal and outage constraint equations for the MT PASA time frame. MT PASA modelling is conducted with system normal and approved planned network outage constraints applied.

See Appendix D for further information on the calculation of transfer capabilities.

4 MT PASA Solution Process

4.1 **NEM Representation**

The power system model used within the MT PASA simulation is similar to the model applied for AEMO's wholesale electricity market systems:

⁷ <u>http://nos.prod.nemnet.net.au/nos</u>

⁸ http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/Congestion-information

The salient features of the power system model are:

- Single regional reference node (RRN) within each market region at which all demand within the region is deemed to apply.
- Generators connected to the regional reference node via a "hub and spoke" model. Static transmission loss factors are used to refer price data from the generator connection point to the RRN of the host region.
- Flow between market regions via interconnectors, which provide transport for energy between regions. Losses for flows over interconnectors are modelled using a dynamic loss model.
- Modelling of thermal, stability and energy constraints to be achieved by overlaying constraint equations onto the market-based model.

4.2 Overview of Modelling Approach

MT PASA assessment is carried out at least weekly using two different model runs:

- Reliability Run to identify and quantify potential *reliability standard* breaches, and assess aggregate constrained and unconstrained capacity in each region, system performance and network capability
- 2. Loss of Load Probability Run to assess days most at risk of load shedding.

These two runs are discussed in more detail in the following sections.

4.3 MT PASA Reliability Run

The MT PASA Reliability Run implements the *reliability standard* by assessing the level of unserved energy and evaluating the likelihood of *reliability standard* breaches through probabilistic modelling. The Reliability Run is conducted weekly.

The MT PASA Reliability Run uses at least 100 Monte-Carlo simulations⁹ on a set of predefined cases to assess variability in unserved energy outcomes (see Figure 1). Demand and intermittent generation supply assumptions vary for each case, driven by different historical weather conditions. Within a case, the Monte-Carlo simulations vary with respect to unplanned generation outages based on historical forced outage rates.

In total, at least 1,000 simulations are conducted for each year of the reliability assessment horizon.

The objective function associated with the simulation is:

- Minimise total generation cost plus hydro storage violation cost subject to:
 - Supply / Demand Balance.
 - o Unit capacity limits observed.
 - Unit/power station/portfolio energy limits observed.
 - Network constraints observed.
 - o Demand Side Participation bounds observed.

The Reliability Run is conducted in three phases:

- 1. Generate random patterns of forced outages and determine any other stochastic parameters required for each simulation run.
- Split the two-year MT PASA horizon into two one-year periods that are solved at a reduced level of time detail to allow long-term energy constraints to be optimised so that resources subject to constraints are deployed at the most appropriate time. Inter-temporal constraints are decomposed into a set of ending targets for each weekly time frame selected for use in phase three.
- 3. Solve the entire horizon in shorter weekly steps with full half-hourly detail, using the weekly allocation targets determined in phase two. MT PASA weekly energy limits are cooptimised with dispatch of other resources, including intermittent generation, to maximise the value of the energy limited resource.

⁹ Probabilistic modelling involves many repetitions of the simulation model while applying random sampling to certain components of the model. In MT PASA the random sampling is applied to the occurrence of forced outages for generation. Other uncertain variables such as regional demand coincidence and intermittent generation availability are varied through use of the different cases.

Most hydro generators are modelled with storages and their generation is subject to historically assessed inflows and outflows from these storages. Energy limits are implemented through the requirement that the storage at the end of the year must be equal to or greater than the storage at the start of the year. Storage levels must also remain within upper and lower bounds. During phase two, a series of optimal storage targets for each weekly period are set for use in phase three. If these targets are not met in phase three, penalties are applied according to a series of penalty bands that are low for small variations and high for large variations from target levels.

In addition to the storage targets, hydro generation is also constrained according to any MT PASA weekly bids submitted. Weekly energy constraints for all generation types are considered in both phase two and phase three, and cannot be violated.

Each simulation produces an estimate of annual USE, with the simulations providing insight into the distribution of annual USE. AEMO uses a minimum of 50% POE and 10% POE demand levels, weighted appropriately¹⁰, to assess the expected USE as a weighted average across all simulations.

If there are material levels of USE in 50% POE results, AEMO considers running additional demand levels such as 90% POE. AEMO is developing a broader range of POE traces for modelling and will update this document should any changes be made, including weightings.

The expected annual USE value from the simulations can be compared directly against the *reliability standard*. This allows AEMO to accurately assess whether the *reliability standard* can be met. AEMO declares a LRC if the expected value of USE across all simulations exceeds the *reliability standard*.

Pain sharing is not included. Instead, the annual USE reported in a region reflects the source of any supply shortfall and is intended to provide participants with the most appropriate locational signals to drive efficient market responses. (See Appendix C for a more detailed explanation).

4.4 MT PASA Loss of Load Probability (LOLP) Run

To determine days most at risk of load shedding, AEMO conducts a LOLP assessment for each day in the two-year horizon, assuming that weather conditions associated with high demand and/or low intermittent generation availability were to occur on that day. The main objective is to determine which days have higher relative risk of loss of load to help participants schedule outages outside of these periods, and indicate when AEMO may be required to direct or contract for reserves under the RERT.

The abstract operational demand and intermittent generation traces discussed in Section 3.2.2 are used for the LOLP run. A detailed explanation of trace construction is given in Appendix B.

The LOLP run uses a probabilistic modelling approach similar to the Reliability Run. Up to 500 simulations with random unplanned outages of scheduled generation are carried out. Energy constraints are not included for LOLP modelling, as only one day at a time is modelled and there is no optimisation over the full horizon. Network constraints incorporating system normal limits and planned outages are used along with the MT PASA availability submitted by participants.

The loss of load probability is calculated by firstly determining the probability of loss of load in each half hour of the day. For example, if 50 out of 500 simulations show loss of load, there is approximately a ten percent chance of loss of load in that particular half hour. The maximum half-hourly LOLP across all 48 half hours is reported as the LOLP for the day.

4.5 Comparison of Model Features

Table 3 shows the comparison of the key features of the two MT PASA modelling runs.

¹⁰ USE results from 50% POE and 10% POE runs are aggregated with 69.6% weighting for 50% POE and 30.4% weighting for 10% POE.

Table 3: Comparison of MT PASA run features

MT PASA INPUTS			
PROPERTY	RELIABILITY RUN LOLP RUN		
Horizon	2 years		
Frequency of Run	Weekly		
Simulations	At least 100 per case	Up to 500, one case only.	
Resolution	Half Hourly, returning a single half hour per day based on wors	t demand/supply conditions	
Registration	Using market system registration as a base including regions, interconnectors, generators, transmission loss factors, interconnector loss models, fuel and regional reference node memberships for generators		
Demand	At least five half hourly demand traces for each of 10% POE and 50% POE maximum demand forecasts. One half hourly abstract operational demand trace bas the maximum operational "ex intermittent" demand his observed in the half hourly reference years		
Generator Capacity	As per participant MT PASA declarations		
Generator Bid Offers	SRMC calculated from heat rate, fuel price, VOM etc.		
Generator Forced/partial outage modelling	Probabilistic assessment of forced outages over multiple simulations		
Hydro Modelling	Based on AEMO hydro storage model ¹¹ with monthly inflows associated with average levels of annual production. Pumped storage modelled. MT PASA Weekly energy constraints applied	Energy limitations are not considered.	

¹¹ <u>http://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/NTNDP/2016/Dec/Market-Modelling-Methodology-And-Input-Assumptions.pdf</u>

Intermittent (Semi Scheduled) Generation	At least five historical weather traces, correlated to demand traces	Traces based on extreme monthly demand and intermittent generation conditions observed in the half hourly historical reference years	
Non-scheduled Generation	Large non-scheduled generation is modelled individually throug Small non-scheduled generation (<30MW) is based on NEFR e		
Network Representation	ST PASA formulation constraints with dynamic right hand side	(RHS with network outages)	
TNSP Limit Data	Equipment ratings inclusive of seasonal variations required for	evaluating generic constraint RHS	
Interconnector forced outage modelling	Not modelled		
Demand Side Participation	At least five static Price/Quantity bands.		
Rooftop PV	Correlated to demand trace, but not explicitly modelled.		
	MT PASA SOLUTION		
PROPERTY	RELIABILITY RUN	LOLP RUN	
Purpose of run	Assess level of unserved energy and the likelihood of <i>reliability standard</i> breaches.	Assess the days at highest risk of loss of load	
Type of run	LP minimising total generation cost subject to: Supply = demand Unit capacity limits observed Generator Energy limits observed Network constraints observed Hydro storage bounds observed	LP minimising total generation cost subject to: Supply = demand Unit capacity limits observed Network constraints observed	
MT PASA OUTPUTS (See Appendix F for Detailed Description of Outputs)			

MEDIUM TERM PASA PROCESS DESCRIPTION

PROPERTY	RELIABILITY RUN	LOLP RUN
Low Reserve Condition	Forecasts of low reserve conditions based on expected annual USE	
Unserved Energy	Distribution of unserved energy on a half hourly snapshot, daily, monthly and annual basis.	
Loss of Load Probability		Highest half hourly LOLP on any given day.
Interconnector Transfer Capabilities	Interconnector transfer capabilities under system normal conditions are published on the AEMO website. ¹² Interconnector capabilities in the presence of outages are assessed during the Reliability Run.	
Network Constraint Impacts	When and where network constraints may become binding on the dispatch of generation or load	
Projected violations of Power System Security	Reporting on any binding and violating constraints that occur during modelling	

¹² Published in the Interconnector Capability report at http://www.aemo.com.au/-/media/Files/PDF/Interconnector-Capabilities-v2.pdf

5 MT PASA Outputs

Under clause 3.7.2(f) of the *Rules*, AEMO must *publish* the MT PASA outputs as part of the MT PASA process¹³. From a reliability perspective, the main MT PASA output is the forecast of any low reserve condition and the estimated USE value.

The NER 4.8.4(a) defines an LRC as:

"Low Reserve Condition – when AEMO considers that the balance of generation capacity and demand for the period being assessed does not meet the reliability standard as assessed in accordance with the reliability standard implementation guidelines".

Table 3 shows the MT PASA outputs produced by the Reliability Run. The outputs are based on short-run marginal cost bidding rather than any estimate of strategic bidding to emulate observed market behaviour. Given the probabilistic nature of the Reliability Run, distributions of simulated outputs are reported in most instances.

MT PASA OUTPUT SPECIFICATIONS NER 3.7.2(f)	MT PASA PUBLICATION	OUTPUT DETAILS
(6) Identification and quantification of:		
(i) Any projected violations of power system security	MT PASA Reliability Run	Constraint solution outputs identifying binding and violating constraints. If any constraints are violated, it indicates that there is a projected violation of power system security.
(ii) Any projected failure to meet the <i>reliability standard</i> assessed in accordance with the RSIG	MT PASA Reliability Run	Annual regional weighted average USE used to identify LRC level if above 0.002%. Expected monthly USE by demand POE level. Half hourly snapshot of USE for each day at the time of NEM Peak "ex intermittent" demand.
(iii) Deleted		
(iv) Forecast interconnector transfer capabilities and the discrepancy between forecast interconnector transfer capabilities and the forecast capacity of the relevant interconnector in the absence of outages on the relevant interconnector only	MT PASA Reliability Run Constraint library & NOS Interconnector Capability Report	MT PASA Reliability Run will provide range estimates of interconnector capabilities in the presence of outages. The Interconnector Capability Report ¹⁴ will provide estimates of interconnector capabilities under system normal conditions. AEMO recommends using the Constraint Library and the Network Outage Schedule for accurate and comprehensive information on applicable constraints.
(v) When and where network constraints may become binding	MT PASA Reliability Run Constraint Report	Constraints may bind at different times in Reliability Run, depending on the demand and intermittent generation trace used, forced outages and generation dispatch.

Table 3: MT PASA Outputs Specified in NER 3.7.2(f)(6) produced by Reliability Run

¹³ <u>http://www.nemweb.com.au/REPORTS/CURRENT/MEDIUM_TERM_PASA_REPORTS/</u>. A guide to the information contained in the MT *PASA* is available in the form of a data model at <u>http://www.aemo.com.au/-/media/Files/PDF/MMS-Data-Model-Report.ashx</u>

¹⁴ The latest report can be found at: <u>http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-</u>reliability/Congestion-information/Network-status-and-capability

on the dispatch of generation or load

AEMO will also provide a "plain English" report on constraints that provides further details on generators impacted by binding constraints.¹⁵ Appendix G provides link with instructions for this report.

Appendix F shows a detailed list of output fields that will be published as part of the MT PASA results sent to participants. Due to the high number of simulations and the quantity of data produced during the runs, the results are aggregated before release to participants.

Where results are reported for a day on a half-hourly snapshot basis, the period selected is the half-hourly interval corresponding to the maximum of the average NEM operational "ex intermittent" demand¹⁶ across all 10% POE simulations. Most daily outputs represent a half-hourly snapshot, reported on this basis.

Outputs prescribed under clause 3.7.2(f)(1) - (4) are based on AEMO peak demand forecasts and corresponding assumptions, and are not utilised by modelling. Output requirements under clauses 3.7.2(f)(3) and (4) are supplied in the three-hourly report, and output under clause 3.7.2(f)(1) and (2) can be derived from other information provided, as explained in Appendix B.

Outputs (5), (5A) and (5B) are also supplied in the three-hourly report as the aggregate value of participant submitted availabilities.

¹⁵ This report provides a list of the constraint equations for outages that are binding in any of the scenarios. The terms on the the lefthand side (affected generators and interconnectors) are shown and the constraint set the constraint equation belongs to is indicated. This then ties back to a description of the outage and NOS.

¹⁶ Calculated as the maximum of 48 half hourly average "ex intermittent" demands. Average is taken across all 10% POE model runs e.g. 5 historical reference years x 100 iterations = 500 simulations.

Appendix A: MT PASA Process Architecture

The MT PASA process operates as follows:

- 1. The valid *Registered Participant* bids are loaded into tables in the central Market Management System (MMS) Database. Bid acknowledgements are returned to *Registered participants*.
- 2. All relevant input data is consolidated by the MT PASA Case Loader for loading into the Reliability and LOLP models. This includes information from participant bids, network limits and outages, generator parameters, hydro modelling information and model configuration details.
- 3. The MT PASA Case Loader populates the input models for the Reliability and LOLP runs and activates the modelling simulations in Azure.
- 4. The MT PASA Solution Aggregator then aggregates the modelling results which are merged into a file for transfer out of Azure into the Solution Loader.
- 5. The Solution Loader loads the file into output tables in the NEM database (WARE).
- 6. The MT PASA NEM report file is then created from the input information and solution information.
- 7. The new MT PASA files are reformatted according to the MMS Data Model (MMSDM) and sent to each *Registered Participant.*
- 8. The visualisations are created from the solution tables, and can be accessed via <u>https://portal.prod.nemnet.net.au/</u>.

Appendix B: Medium Term Demand Forecasting Process

MT PASA modelling is based on operational demand forecasts. Figure 3 gives a pictorial definition of this demand. Participant bids are received on as "as generated" basis, while demand forecasts are created on a "sent-out" basis. The difference between the two is the auxiliary load – the station load that supports the operation of the power station.

The estimated auxiliary load is automatically calculated during the modelling as a fixed percentage of "as generated power". The information supplied to the model is based on ACIL Allen's Fuel and Technology Cost Review Data which can be found in AEMO's Modelling Assumptions database¹⁷. The overall auxiliary load is therefore dependent on the particular dispatch configuration in each simulation as all generator types have varying levels of auxiliary load.

Reliability Run Demand Traces

The methodology for creating "as sent out" half hourly demand trace inputs for modelling is covered below:

- Representative traces are obtained using at least five years of historical data.
- Future Liquefied Natural Gas (LNG) export demand is assumed to have a flat profile across the year and is added to the future Queensland demand traces.
- Projections of future levels of annual underlying energy consumption and maximum demand in each region are obtained from the most recent NEFR.
- Derived operational traces (with rooftop PV added) are "grown" to represent future energy consumption and maximum demand.
- Forecast rooftop PV is subtracted from the grown trace and retained for separate reporting.
- The assumed impact of behind-the-meter battery storage is also incorporated.

¹⁷ http://www.aemo.com.au/-/media/Files/XLS/Fuel_and_Technology_Cost_Review_Data_ACIL_Allen.xlsx

Loss of Load Probability Run Demand Traces

The LOLP run uses abstract operational demand and intermittent generation traces that assume high demand and low intermittent generation weather conditions on every day. The abstract traces for each region are developed as follows:

- For each historical reference year (e.g. 2014/15), take the forecast 10% POE operational demand trace (the same one used for the Reliability Run).
- Determine the regional total of intermittent generation in the same reference year, by aggregating the individual intermittent generation traces, taking into account the size/timings of committed new entrants.
- Subtract total regional intermittent generation from demand for that particular reference year to determine a regional "ex intermittent" demand trace.
- For each month/subset of a month¹⁸ and day-of-week¹⁹ type, find the maximum half-hour operational "ex intermittent" demand value across the historical reference years and record the date (day and year).

Date & Time of Maximum Ex Intermittent demand for Month	Day of Week	Historical Reference Year	Operational Demand (MW)	Intermittent Demand (MW)	Ex Intermittent Demand (MW)
19/02/2018 17:00	Monday	1213	3,221	395	2,826
06/02/2018 16:00	Tuesday	910	3,311	555	2,756
07/02/2018 17:00	Wednesday	1617	3,350	276	3,074
08/02/2018 18:00	Thursday	1617	3,197	227	2,971
23/02/2018 17:00	Friday	1112	3,191	321	2,870
24/02/2018 18:00	Saturday	1112	3,119	218	2,902
25/02/2018 17:00	Sunday	1415	3,120	180	2,940

Table 4: Example: Maximum dates and times for Ex Intermittent Demand in February

- For each date selected above, record the level of operational "ex intermittent" demand, and intermittent generation availability for each intermittent generator in each of the 48 half hours within the day, from the corresponding reference year forecast traces.
- Construct the abstract operational demand and individual intermittent generation traces repeating values for each day-of-week type (Monday to Sunday) in the month.

MT PASA Weekly Energy

The most probable weekly energy requirement is specified in Clause 3.7.2(f)(4). It is calculated from the historical reference year half-hourly 50% POE operational "sent-out" demand traces produced for the Reliability Run.

For each demand trace, the weekly energy is calculated as the sum of the half-hourly energy in the week divided by two²⁰. The average weekly energy across the traces is reported.

¹⁸ Smaller time periods may be used to account for holidays e.g. Christmas, and to better represent months where the early weeks are demonstrably different than later months based on historical demand patterns.

¹⁹ Each day of the week is considered separately – i.e. all Mondays are considered together, then all Tuesdays etc.
²⁰ Division by two is needed as we are summing half hourly demand values.

MT PASA Daily Peak Demand Traces

Under clauses 3.7.2(f)(1) to (3), AEMO is required to report the forecasts for 10% POE and 50% POE peak demand met by scheduled and semi-scheduled generators (1), non-scheduled aggregate MW allowance (2) and native demand (3) on a daily basis. These demand forecasts are derived for reporting purposes only, they are not used in either the Reliability Run or the LOLP run.

Figure 4 shows the relationship between the regional native demand published in the National Electricity Forecasting Report (NEFR) and the daily demand categories required to be published under the Rules.

Figure 4: Native demand components²¹

The abstract demand traces used for the LOLP run are not directly comparable to 10% POE daily demand met by scheduled and semi-scheduled generators due to a different treatment of intermittent generation. LOLP traces consider historical output of large non-scheduled generation (i.e. not including small non-scheduled generators) at times of high "ex intermittent" demand.

MT PASA daily peak demand forecasts (3.7.2(f)(1)) are produced in three steps:

- Step 1 Derive regional daily peak native demand profiles (3.7.2(f)(3)) using NEFR native summer/winter demand as the basis (reported in three-hourly report).
- Step 2 Calculate aggregated MW allowance for large non-scheduled generation as the difference between reported total intermittent generation and total semi-scheduled generation. Derive aggregated MW allowance for small non-scheduled generation based on NEFR forecasts).
- Step 3 Derive regional daily peak demand profiles for MT *PASA* (3.7.2(f)(1)) by subtracting the demand met by large and small non-scheduled generation from the regional daily native peak demand profiles determined in Step 1.

²¹ Yarwun is considered to be non-scheduled generation for reporting and is included in the small non-scheduled generation value, but is also modelled explicitly as a scheduled generation.

Figure 5: Method of developing reported MT PASA daily demand forecasts

* Difference between TOTALINTERMITTENTGEN50 and TOTALSEMISCHEDULEDGEN50

Step 1

The weekly factor profile represents a normalised set of factors (i.e. one factor for each week in the year) determined by taking the ratios of actual maximum weekly demand to the seasonal demand published in NEFR for the given historical year. The normalised set of factors are derived taking historical demand and temperature data into consideration. Refer Figure 6 below. Note that AEMO uses historical data for past ten years for these steps.

The weekday factor profile represents the ratios of daily maximum demand to the maximum demand of each week in a year. Weekday factors are derived taking historical daily peak demand data as well as regional public holidays for the past ten years into consideration. The weekday factors are used consistently across all weeks of the forecast period when MT *PASA* demand forecasts are produced.

Step 2

Non-scheduled demand represents the demand met by both small and large non-scheduled generation. The small non-scheduled demand is supplied through the NEFR as an annual summer and winter figure²² and through the *NONSCHEDULEDGENERATION* field in the three-hourly report. The large non-scheduled demand is dervied by calculating the difference between intermittent generation and semi-scheduled generation in the Reliability Run (see MT PASA output tables, Appendix F).

Step 3

Step 3 consists of deriving the regional 10% POE and 50% POE daily peak demand profiles met by scheduled and semi-scheduled generations (Clause 3.7.2.(f)(1)) by subtracting non-scheduled demand (step 2) from native demand (step 1).

²² http://forecasting.aemo.com.au/Electricity/MaximumDemand/Operational

Appendix C: Pain Sharing

The pain sharing principle of the NEM states that load shedding should be spread pro rata throughout interconnected regions when this would not increase total load shedding. This is to avoid unfairly penalising one region for a supply deficit spread through several interconnected regions.

Specifically, the Equitable Load Shedding Arrangement²³ states "as far as practicable, any reductions, from load shedding as requested by AEMO and/or mandatory restrictions, in each region must occur in proportion to the aggregate notional demand of the effective connection points in that region, until the remaining demand can be met, such that the power system remains or returns (as appropriate) initially to a satisfactory operating state."

It is open to interpretation whether the pain sharing principles should apply over the annual period, or be more literally applied to each half-hour period where USE may be projected, irrespective of previous incidents. One may argue that, for planning purposes, pain sharing should aim to equalise USE across all NEM regions over the year, taking account of localised USE events that have already occurred. This would be consistent with implementation of the *reliability standard*, using pain sharing to keep load shedding in all regions to less than 0.002% where possible.

Irrespective of the interpretation of the principle, the EY Report on MT PASA stated that pain sharing is problematic in models, since shifting USE between regions will almost inevitably change interconnector losses, generally increasing the total quantity of USE. Since the purpose of MT PASA is to accurately assess USE, EY recommended that pain sharing be considered a non-core component of MT PASA design.

AEMO considers that the interests of the markets are best served by providing an accurate assessment of USE in any region, where shortfall occurs to encourage efficient locational investment signals.

Application of pain sharing to MT PASA modelling results has the potential to obscure the true state of supply issues in a region and thus will not be incorporated into the reliability assessments.

²³ <u>http://www.aemc.gov.au/getattachment/deafe4fa-c992-4c34-bb74-c8d83cd1ba67/Guidelines-for-Management-of-Electricity-Supply-Sh.aspx</u>

Appendix D: Calculation of Transfer Limits

Interconnector transfer capabilities in the presence of outages are calculated by examining the results of the MT PASA Reliability Runs according to the following process:

- Obtain the static import and export rating for each interconnector.
- Examine each binding constraint that has the interconnector term on the LHS.
- Move all non-interconnector terms to RHS and calculate RHS value based on dispatch outcomes.
- Divide the constraints RHS value by the coefficient of the interconnector term on the LHS.
- Positive values refer to an export limit, negative values are imports.
- Set the interconnector limit for a given Monte-Carlo sample equal to the minimum value from all relevant constraints.

To assess whether interconnector flow is binding for import or export, the following logic is used:

1. Examine list of constraints before they are put into simulation.

2. Flag a group of those constraints as 'Interconnector export limiting' (defined as a constraint with an interconnector term on LHS and a positive interconnector term factor) -> do this for each interconnector ID.

3. Flag a group of those constraints as 'Interconnector import limiting' (defined as a constraint with an interconnector term on LHS and a negative interconnector term factor) -> do this for each interconnector ID.

For each flagged group of constraints, perform the following aggregation logic for the probabilities:

PROBABILITYOFBINDINGEXPORT = [Count of all iterations in a specific demand POE level and time period that have a constraint with both Constraint.HoursBinding>0 and is flagged as 'Interconnector export limiting' for that interconnector id] / [Total number of Iterations]

PROBABILITYOFBINDINGIMPORT = [Count of all iterations in a specific demand POE level and time period that have a constraint with both Constraint.HoursBinding>0 and is flagged as 'Interconnector import limiting' for that interconnector id] / [Total number of Iterations]

Appendix E: Graphical Outputs

The following charts represent outputs that will be available on the AEMO website following each MT PASA run. They are based on "mock data" and do not represent real modelling outcomes. The charts in this Appendix are interpretative only.

Figure 8 shows the output from the Reliability Run that indicates whether the *reliability standard* can be met in each region for each year of the reliability assessment. The red line indicates the *reliability standard*, so any bars that exceed the *reliability standard* indicate a *low reserve condition* exists.

Figure 8: Assessment of Reliability Standard

Figure 9 shows the distribution of unserved energy (USE) across a year and is intended to give information on the range of USE outcomes observed in each simulation run conducted for different demand POE levels. The chart indicates that approximately 40% of simulation runs under 10% POE conditions showed the *reliability standard* was breached, while less than 10% of simulation runs at the 50% POE level reported a breach of the *reliability standard*.

Figure 9: Annual Distribution of Unserved Energy (User to select Region and Year)

Figure 10 shows the distribution of the size of USE events seen in each month in boxplot format. Only those periods where USE was greater than zero are shown on the plot. The boxes represent the $25^{\text{th}} - 75^{\text{th}}$ percentiles of USE (the median line is in the middle of the box) when comparing the total monthly USE for each simulation run. The whiskers show the minimum and maximum values observed across the simulations.

Figure 10: Size of Unserved Energy events by month (User to select POE Demand Level, Region and Year)

Figure 11 gives more detailed insight into the USE observed through modelling outcomes by considering the frequency of events as well as the expected size of the USE events. In this chart it can be seen that when comparing the modelling outcomes for 50% POE and 10% POE conditions, there are more frequent USE events of a larger magnitude under 10% POE conditions compare to 50% POE conditions.

Figure 11: Severity and Frequency of Unserved Energy (User to select Region and Year)

Figure 12 shows the average interconnector capacity limits (averaged across the Monte-carlo simulations) in the presence of network outages as well as a half-hourly snapshot of flow on the interconnector.

Figure 12: Interconnector Flow Limits (User to select Interconnector)

Figure 13 shows the output from the LOLP run. The grey area shows the scheduled generation availability according to MT PASA bids. The black line shows the operational demand trace calculated for the LOLP run with the associated intermittent generation (orange area). The top line represents the total available nameplate capacity (both scheduled and intermittent).

The Daily LOLP index shown at the bottom of the chart indicates the periods at risk of loss of load under extreme weather conditions. Periods of relatively high LOLP should be avoided if possible when scheduling maintenance. The LOLP is colour coded according to the extent of USE expected in that half hour with the highest loss of load in each day. Red indicates that the magnitude is high (greater than 400MW), orange that the magnitude is moderate (between 150 and 400 MW) and yellow that the magnitude is low (less than 150 MW).

Figure 13: Supply demand breakdown & maintenance period overview from LOLP Run (User to select Region and Year)

Appendix F: MT PASA Output Tables

COLUMN_NAME	DATA TYPE	DESCRIPTION		
MTPASA_CONSTRAINTRESULT	MTPASA_CONSTRAINTRESULT			
RUN_DATETIME		Date processing of the run begins		
RUN_NO		Unique run id		
RUNTYPE		Type of run. Always RELIABILITY		
DEMAND_POE		Demand POE type used. Values are POE10		
DAY		Day this result is for		
CONSTRAINTID		The unique identifier for the constraint. Only binding or violating constraints are reported		
EFFECTIVEDATE		The effective date of the constraint used		
VERSIONNO		The version of the constraint used		
PERIODID		Half hourly period reported, selected as period of maximum NEM operational "ex intermittent" demand (calculated as maximum of "ex intermittent" demands, averaged over reference years and iterations)		
PROBABILITYOFBINDING	Snapshot – half hourly (NEM Max)	Proportion of a constraint binding across iterations and reference years		
PROBABILITYOFVIOLATION	Snapshot – half hourly (NEM Max)	Proportion of a constraint violating across iterations and reference years		
CONSTRAINTVIOLATION90	Snapshot – half hourly (NEM Max)	The 90% percentile violation degree for this constraint, across iterations and reference years (MW)		
CONSTRAINTVIOLATION50	Snapshot – half hourly (NEM Max)	The 50% percentile violation degree for this constraint, across iterations and reference years (MW		
CONSTRAINTVIOLATION10	Snapshot – half hourly (NEM Max)	The 10% percentile violation degree for this constraint, across iterations and reference years (MW)		
LASTCHANGED		Date the report was created		
MTPASA_CONSTRAINTSUMMARY				
RUN_DATETIME		Date processing of the run begins		
RUN_NO		Unique run id		
RUNTYPE		Type of run. Always RELIABILITY		
DEMAND_POE		Demand POE type used. Values are POE10		
DAY		Day this result is for		
CONSTRAINTID		The unique identifier for the constraint. Only binding or violating constraints are reported		
EFFECTIVEDATE		The effective date of the constraint used		
VERSIONNO		The version of the constraint used		
AGGREGATION_PERIOD	Snapshot – half hourly peak/shoulder/off-peak	Period data is aggregated over. Values are PEAK, SHOULDER, OFFPEAK or PERIOD		
	Snapshot – half hourly	Constraint hours his disc for period		
	peak/shoulder/off-peak	Constraint hours binding for period		
	-	Date the report was created		
		Date processing of the run begins		
		Date processing of the run begins		
		Unique run id		
		Type of run. Always RELIABILITY		
DEMAND_POE		Demand POE type used. Values are POE10		
		Day this result is for		
PERIODID		The unique identifier for the interconnector Half hourly period reported, selected as period of maximum NEM "ex intermittent" demand (calculated as maximum of "ex intermittent" demands, averaged reference years and iterations)		
FLOW90	Snapshot – half hourly (NEM Max)	The 90% percentile for flows across iterations and reference years. Positive values indicate exporting, negative values indicate importing (MW)		

FLOW50	Snapshot – half hourly (NEM Max)	The 50% percentile for flows across iterations and reference years. Positive values indicate exporting, negative values indicate importing (MW)
FLOW10	Snapshot – half hourly (NEM Max)	The 10% percentile for flows across iterations and reference years. Positive values indicate exporting, negative values indicate importing (MW)
PROBABILITYOFBINDINGEXPORT	Snapshot – half hourly (NEM Max)	Proportion of iterations and reference years with interconnector constrained when exporting
PROBABILITYOFBINDINGIMPORT	Snapshot – half hourly (NEM Max)	Proportion of iterations and reference years with interconnector constrained when importing
CALCULATEDEXPORTLIMIT	Snapshot – half hourly (NEM Max)	Calculated Interconnector limit of exporting energy on the basis of invoked constraints and static interconnector export limit, averaged across iterations and reference years
CALCULATEDIMPORTLIMIT	Snapshot – half hourly (NEM Max)	Calculated Interconnector limit of importing energy on the basis of invoked constraints and static interconnector import limit, averaged across iterations and reference years
LASTCHANGED		Date the report was created
MTPASA_LOLPRESULT	1	
RUN_DATETIME		Date processing of the run begins
RUN_NO		Unique run id
RUNTYPE		Type of run. Always LOLP
DAY		Day this result is for
REGIONID		The unique region identifier
WORST_INTERVAL_PERIODID	Snapshot – half hourly (worst of day)	The half hourly interval period with the highest LOLP, or highest region demand net of intermittent generation if LOLP = 0 for all intervals (148)
WORST_INTERVAL_DEMAND	Snapshot – half hourly (worst of day)	The LOLP half hourly demand for the worst interval in this region (MW)
WORST_INTERVAL_INT_GEN	Snapshot – half hourly (worst of day)	The half hourly aggregate intermittent generation for the interval period with the worst LOLP in this region (MW)
	Snapshot – half hourly (worst of day)	Loss of Load Probability for day reported
LOSSOFLOADMAGNITUDE	Snapshot – half hourly (worst of day)	Loss of Load Magnitude for day reported. Values are LOW, MEDIUM, HIGH
LASTCHANGED		Date the report was created
MTPASA_REGIONRESULT		· · ·
RUN DATETIME		Date processing of the run begins
RUN NO		Unique run id
RUNTYPE		Type of run. Always RELIABILITY
DEMAND POE		Demand POE type used. Values are POE10
DAY		Day this result is for
REGIONID		The unique region identifier
PERIODID	Snapshot – half hourly (NEM Max)	Half hourly period reported, selected as period of maximum NEM "ex intermittent" demand (calculated as maximum of "ex intermittent" demands, averaged reference years and iterations)
	Snapshot – half hourly (NEM	
AGGREGATEINSTALLEDCAPACITY	Max) Snapshot – half hourly (NEM Max)	Demand value from selected half hourly interval (MW) The total rated capacity of all active generation (MW)
NUMBEROFITERATIONS	Snapshot – half hourly (NEM Max)	Total number of iterations and reference years performed
	Snapshot – half hourly (NEM	
USE_NUMBEROFITERATIONS	Max) Snapshot – half hourly (NEM	Number of iterations and reference years showing USE
USE_AVERAGE	Max) Snapshot – half hourly (NEM	Average USE across all iterations and reference years (MW) Average USE event size across all iterations and reference years
USE_EVENT_AVERAGE	Max) Snapshot – half hourly (NEM	(MW)
USE_MAX	Max) Snapshot – half hourly (NEM	Maximum USE across all iterations and reference years (MW)
USE_MIN	Max) Snapshot – half hourly (NEM	Minimum USE across all iterations and reference years (MW)
USE_MEDIAN	Max)	Median USE across all iterations and reference years (MW)

USE_LOWERQUARTILE	Snapshot – half hourly (NEM Max)	Lower quartile USE across all iterations and reference years (MW)
USE UPPERQUARTILE	Snapshot – half hourly (NEM Max)	Upper quartile daily USE across all iterations and reference years (MW)
TOTALSCHEDULEDGEN90	Snapshot – half hourly (NEM Max)	The 90% percentile for scheduled generation across iterations and reference years (MW)
TOTALSCHEDULEDGEN50	Snapshot – half hourly (NEM Max)	The 50% percentile for scheduled generation across iterations and reference years (MW)
TOTALSCHEDULEDGEN10	Snapshot – half hourly (NEM	The 10% percentile for scheduled generation across iterations and reference years (MW)
TOTALINTERMITTENTGEN90	Max) Snapshot – half hourly (NEM	The 90% percentile for intermittent generation across all iterations and reference years (MW)
TOTALINTERMITTENTGEN50	Max) Snapshot – half hourly (NEM	The 50% percentile for intermittent generation across all iterations
TOTALINTERMITTENTGEN10	Max) Snapshot – half hourly (NEM	and reference years (MW) The 10% percentile for intermittent generation across all iterations
TOTALSEMISCHEDULEDGEN90	Max) Snapshot – half hourly (NEM	and reference years (MW) The 90% percentile for semi-scheduled generation across all
TOTALSEMISCHEDULEDGEN50	Max) Snapshot – half hourly (NEM	iterations and reference years (MW) The 50% percentile for semi-scheduled generation across all
TOTALSEMISCHEDULEDGEN10	Max) Snapshot – half hourly (NEM	iterations and reference years (MW) The 10% percentile for semi-scheduled generation across all
DEMANDSIDEPARTICIPATION90	Max) Snapshot – half hourly (NEM	iterations and reference years (MW) The 90% percentile for demand side participation across all
	Max) Snapshot – half hourly (NEM	iterations and half hours (MW) The 50% percentile for demand side participation across all
DEMANDSIDEPARTICIPATION50	Max)	iterations and half hours (MW)
DEMANDSIDEPARTICIPATION10	Snapshot – half hourly (NEM Max)	The 10% percentile for demand side participation across all iterations and half hours (MW)
LASTCHANGED		Date the report was created
MTPASA_REGIONSUMMARY		
RUN_DATETIME		Date processing of the run begins
RUN_NO		Unique run id
RUNTYPE		Type of run. Always RELIABILITY
DEMAND_POE		Demand POE type used. Values are POE10 or POE50
AGGREGATION_PERIOD		Period data is aggregated over. Values are YEAR, MONTH
PERIOD_ENDING		Date time of day at end of interval (which may be over a year, a month)
REGIONID		The unique region identifier
NATIVEDEMAND	Average monthly/annual	Native demand from NEFR, pro-rated for horizon year specified in
NATIVEDEMAND	iteration totals Percentiles assessed over	PERIOD_ENDING (MWh)
USE_PERCENTILE10	iteration totals for either month or year	USE period amount at the 10% percentile of iterations and reference years (MWh)
	Percentiles assessed over iteration totals for either month	USE period amount at the 20% percentile of iterations and
USE_PERCENTILE20	or year	reference years (MWh)
	Percentiles assessed over	LISE pariod amount at the 20% parcentile of iterations and
USE_PERCENTILE30	iteration totals for either month or year	USE period amount at the 30% percentile of iterations and reference years (MWh)
	Percentiles assessed over	LICE noticed encount at the 400/ noncertile of iterations and
USE_PERCENTILE40	iteration totals for either month or year	USE period amount at the 40% percentile of iterations and reference years (MWh)
-	Percentiles assessed over	
USE PERCENTILE50	iteration totals for either month or year	USE period amount at the 50% percentile of iterations and reference years (MWh)
	Percentiles assessed over	
USE_PERCENTILE60	iteration totals for either month or year	USE period amount at the 60% percentile of iterations and reference years (MWh)
	Percentiles assessed over	
USE_PERCENTILE70	iteration totals for either month or year	USE period amount at the 70% percentile of iterations and reference years (MWh)
	Percentiles assessed over	LISE pariod amount at the 200/ parcentile of iterations and
USE_PERCENTILE80	iteration totals for either month or year	USE period amount at the 80% percentile of iterations and reference years (MWh)
	Percentiles assessed over iteration totals for either month	USE period amount at the 90% percentile of iterations and
USE_PERCENTILE90	or year	reference years (MWh)

USE PERCENTILE100	Percentiles assessed over iteration totals for either month or year	USE period amount at the 100% percentile of iterations and reference years (MWh)
USE AVERAGE	Average monthly/annual iteration totals	Average period USE across iterations and reference years (MWh)
WEIGHT	Fixed value	Weighting use for aggregating POE Demand Level. 0.696 (50 POE) or 0.304 (10 POE)
USE_WEIGHTED_AVG	Regional Weighted Average USE (Percent)	((USE_AVERAGE_POE10 / NATIVE_DEMAND_POE_10 * WEIGHT_POE_10) + (USE_AVERAGE_POE50 / NATIVE_DEMAND_POE_50 * WEIGHT_POE_50))*100
LRC	LRC reporting for region	LRC Condition reported (Value=1) if USE_WEIGHTED_AVG >= 0.002% otherwise no LRC (Value=0)
NUMBEROFITERATIONS	Value by month/year	Total number of iterations and reference years performed
USE NUMBEROFITERATIONS	Value by month/year	Number of iterations and reference years showing USE
	Assessed over iteration totals for	Upper quartile USE event size across all half hourly intervals and
USE_EVENT_UPPER QUARTILE	either month or year	iterations and reference years that have USE>0 (MW)
	Assessed over iteration totals for	Lower quartile USE event size across all half hourly intervals and
USE_EVENT_LOWER QUARTILE	either month or year	iterations and reference years that have USE>0 (MW)
	Assessed over iteration totals for	Max quartile USE event size across all half hourly intervals and
USE_EVENT_MAX	either month or year	iterations and reference years that have USE>0 (MW)
	Assessed over iteration totals for either month or year	Min quartile USE event size across all half hourly intervals and
USE_EVENT_MIN	Assessed over iteration totals for	iterations and reference years that have USE>0 (MW) Median guartile USE event size across all half hourly intervals and
USE EVENT MEDIAN	either month or year	iterations and reference years that have USE>0 (MW)
LASTCHANGED		Date the report was created
MTPASA_REGIONAVAILABILITY - TH	REE HOURLY REPORT	•
PUBLISH_DATETIME		Date Time the report was published.
DAY		Date on which the aggregation applies.
REGIONID		NEM Region
PASAAVAILABILITY SCHEDULED	Regional aggregation of bid values	Aggregate of the offered PASA Availability for all Scheduled generators in this region.
FASAAVAILABILITT_SCHEDULLD	values	Date Time of the latest offer used in the aggregation for this region
LATEST_OFFER_DATETIME		and date.
ENERGYUNCONSTRAINEDCAPACITY		Region energy unconstrained MW capacity
ENERGYCONSTRAINEDCAPACITY		Region energy constrained MW capacity
NONSCHEDULEDGENERATION	Daily Peak	Allowance made for small non-scheduled generation in the demand forecast (MW).
DEMAND10	Daily Peak	10% probability native demand
DEMAND50	Daily Peak	50% probability native demand
ENERGYREQDEMAND10	Weekly Total	Weekly Energy Calculated directly from the half hourly 10% POE trace (GWh)
ENERGYREQDEMAND50	Weekly Total	Weekly Energy Calculated directly from the half hourly 50% POE trace (GWh)

Appendix G: "Plain English" Report on Constraints

AEMO will provide a "plain English" report on constraints that provides further details on generators impacting by binding constraints.

To access the "plain English report" service:

- 1. Access via: https://portal.prod.nemnet.net.au/#/signin
- 2. From menu items: MMS→Market Info→View Market Notices→View Market Notices
- 3. Type in constraints in the Constraints ID field, and Submit as per the screenshot below. The "plain English" report will be displayed on submission.

Figure 14

Mandard Info	nts - Plain English for Australian Energy Market Operator Limited		
Market Info			
Market Info - Constraint Set	· · ·		
View Market + Constraint Id	N>>N-NIL_B_15M		
View Market Notices + Constrain	nt: N>>N-NILB_15M		
View Constraints — Effective date	Constraint type: LHS≺=RHS Effective date: 12/04/2018 Author: MAHMADI		
	tive in: Dispatch and DS PASA, Predispatch and PD PASA, ST PASA, MT PASA		
Offers & Submissions + Active in PAS	atch RHS: Predispatch A for: LRC & LOR scription: Out= Nil, avoid O/L Upper Tumut to Canberra (01) using 15 mins rating on trip of Lower Tumut to Canberra (07) line, Feedback		
Intermittent Generation + Source: AEM	Impact: Vic - NSW Interconnector + Generators		
Modifications Additional No			
0.819 x Silve 0.4615 x Blow -0.4025 x BOC -0.3034 x Woo -0.4025 x Gut 0.7396 x Low -0.7964 x Low -0.7964 x Low -0.7954 x Low -0.7951 x Uran 0.7051 x Uran 0.751 x Uran 0			