
SLIDE 1

SHARED MARKET PROTOCOL

NOTIFIED PARTIES

23th November 2016

CONFIDENTIAL – RESTRICTED

PREPARED BY: AEMO

TEMPLATE V0.3

SLIDE 2

NOTIFIED PARTIES VS ONE TO MANY

TRANSACTIONS

Notified Parties (Available on FTP & Webservices)

The purpose of the notified parties process it to allow Participants to be notified of works

physically being performed or remotely performed on a site. Notifications are not requests for

action nor are they a true One to Many transaction.

One to Many transaction (Available only on Webservices)

The purpose of a one to many transaction is to allow participants to send transactions or

notifications to multiple parties. The E-hub utilising the webservices protocol will support One

to Many transactions even though they are not prescribed in the procedures. This will enable

participants to use the e-hub more efficiently in the future.

IEC Information Paper states that:
The B2B procedures and e-hub should:

• Be capable of supporting one-to-one and one-to-many transaction management; and

• Allow users to define which B2B parties are to receive each B2B communication

‘One to Many’ transactions will be supported through the new Webservices protocol

that was discussed in the SWG on 18th November 2017.

SLIDE 3

NOTIFIED PARTIES – NEW NOTIFICATION

Initiator Hub

Recipient

Notified Party

1

5

2

3

1: AseXML Header
From: Initiator
To: Recipient
To: Notified Party (N – Attribute)
ServiceOrderRequest

4

2: AseXML Header
From: Initiator
To: Recipient
ServiceOrderRequest

3: AseXML Header
From: Initiator (Hub)
To: Notified Party (N – Attribute)
Notification (Initial)

6

AEMO recommends the header be modified to enable multiple
TO parties that are attributed or assigned roles for Notification.

This will mean the NotifiedID will not be required in the
transaction. This will enable One to Many transactions in the

Webservices protocol

5: AseXML Header
From: Recipient
To: Initiator
ServiceOrderResponse

6: AseXML Header
From: Initiator (Hub)
To: Notified Party (N – Attribute)
Notification (Completion)

4: AseXML Header
From: Recipient
To:Initiator
ServiceOrderResponse

Notification (initial)

Notification (REJECT)

AseXML Header
From: Notified Party
To: Initiator
Notification (REJECT)

AseXML Header
From: Initiator
To: Notified Party (N – Attribute)
Notification (Initial)

Required transactions:

NEW Notification

Notification (REJECT)

Service Order TACK

AseXML Header
From: Initiator (Hub)
To: Notified Party (N – Attribute)
Notification (REJECT)

SLIDE 4

NOTIFIED PARTIES – NEW NOTIFICATION

Initiator Hub Notified Party

Notification (initial)

Notification (Reject)

Notification (Completion)

Notification (initial)

Notification (Reject)

Notification (Completion)

5: AseXML Header
From: Initiator
To: Notified Party (N – Attribute)

Notification (initial)

5: AseXML Header
From: Initiator
To: Notified Party (N – Attribute)
Notification (Completion)

7: AseXML Header
From: Recipient
To: Initiator
TACK Notification (Reject)

SLIDE 5

NOTIFIED PARTIES

aseXML Header change:

• When the Initiator a service order the initiator will need to populate the multiple ‘TO’ participants in the

header and populate the attribute/role of the notified parties.

• Participants bundling logic will need to cater for this change

• Change needs to be made to facilitate the One to Many transaction

Notification type change:

• When the Notified Party receives the new notification type they will be able to identify the notification

only messages by referencing the ‘TO’ participant in the header and the attribute/role or by the new

transaction type.

