

2024 ELI Report Appendix 7. Victoria June 2024

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 30 April 2024, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2024 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

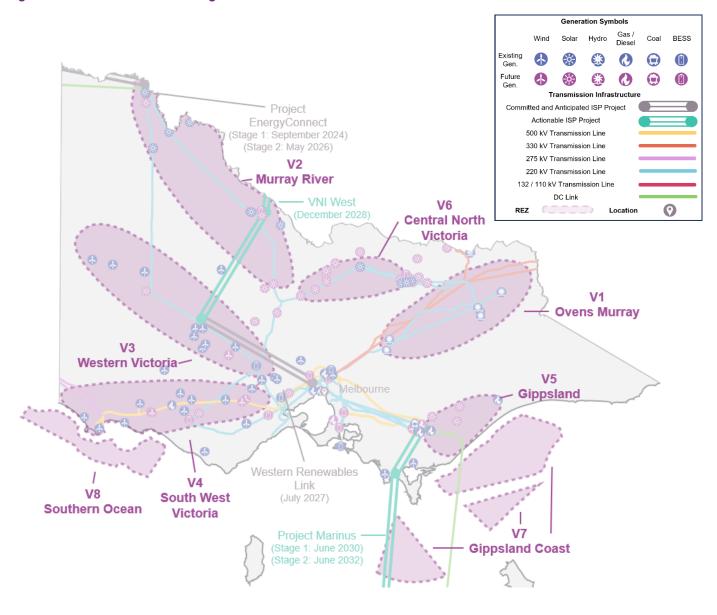
Version	Release date	Changes
1.0	07/06/2024	Initial release.

AEMO acknowledges the Traditional Owners of country throughout Australia and recognises their continuing connection to land, waters and culture. We pay respect to Elders past and present.

Contents

A7.1	Introduction	4
A7.2	V1 – Ovens Murray	5
A7.3	V2 – Murray River	8
A7.4	V3 – Western Victoria	11
A7.5	V4 – South West Victoria	14
A7.6	V5 – Gippsland	17
A7.7	V6 – Central North Victoria	20
A7.8	V7 – Gippsland Coast	23
A7.9	V8 – Southern Ocean	26
A7.10	Non-REZ	29

Figures


Figure 1 Overview of Victoria region and REZs

A7.1 Introduction

This appendix provides detailed locational indicators and metrics for each REZ within Victoria. Figure 1 provides an overview map of the Victoria region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout this appendix.

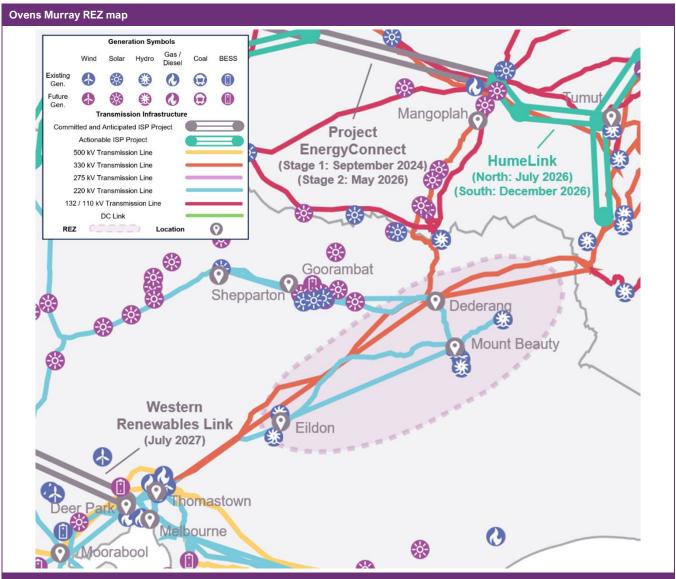

This appendix uses existing sources of publicly available information which includes the Draft 2024 ISP. Some of this information may change with the publication of the Final 2024 ISP in June 2024.

Figure 1 Overview of Victoria region and REZs

A7.2 V1 – Ovens Murray

RF7 information

Overview

Network Transfer Capability

The Ovens Murray REZ has been identified as a candidate REZ due to this REZ having good pumped hydro resources. There is currently 770 MW of installed hydro generation within this zone.

The current network capacity in Ovens Murray is approximately 350 $\ensuremath{\mathrm{MW}}^{\ 1}$

Jurisdictional body

AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs².

¹ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

² The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (*Victoria*) Amendment (*VicGrid*) Act 2024. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

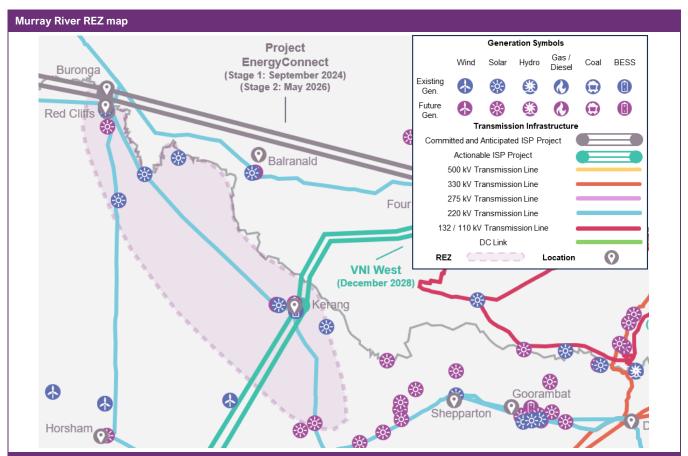
Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

Resource metrics						
Resource	Solar Wind					
Resource Quality	D	E				
Renewable Potential (MW)	1,000	-				
Climate hazard						
Temperature score	В	Bushfire score	E			

Marginal loss factors

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
-	-	-


Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
V>>NIL_MBDD_MBDD	41.3	21,015.0	Generation contributing to flow from Mount Beauty to Dederang 220 kV on trip of the parallel Mount Beauty – Dederang 220 kV line		

VRE semi-scheduled curtailment – calendar year 2023							
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
-	-		-	-	-	-	
VRE curtailmen	t – ISP forecast						
	20	25	2026		2027		
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading	
Step Change	-	-	-	-	-	-	

Existing/ committed/ anticipated	2025		Projected	1							
	2025			4		Existing/			Projected	t	
		2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
-	-	-	-	-	-	-	-	-	-	-	-
access expans	ion for S	tep Chan	ge								
00											_
50											_
00											_
50											
00											_
50 ———											_
00											_
50											_
•											_
			2025-26							3-29	
	•				0					ast	
((((((((((((((((((((500 ———————————————————————————————————	500 ———————————————————————————————————	50 — — — — — — — — — — — — — — — — — — —	50	00	00	00	200	00	00	200

A7.3 V2 – Murray River

RF7 information

Overview

The Murray River REZ has grade C solar resource quality. Despite being remote, this REZ has attracted significant investment in solar generation. Voltage stability and thermal limits currently restrict the output of generators within this REZ. The actionable VNI West project will upgrade transfer capability between Victoria and New South Wales via Bulgana, and significantly increase the ability for renewable generation to connect in this zone. As noted in the 2023 *Victorian Annual Planning Report*, voltage oscillation constraints affecting this area are expected to reduce following completion of Project EnergyConnect.

Network Transfer Capability

The current REZ transmission limit for existing and new VRE before any network upgrade in Murray River is approximately 440 MW. No additional capacity to connect new generation. ³

Jurisdictional body

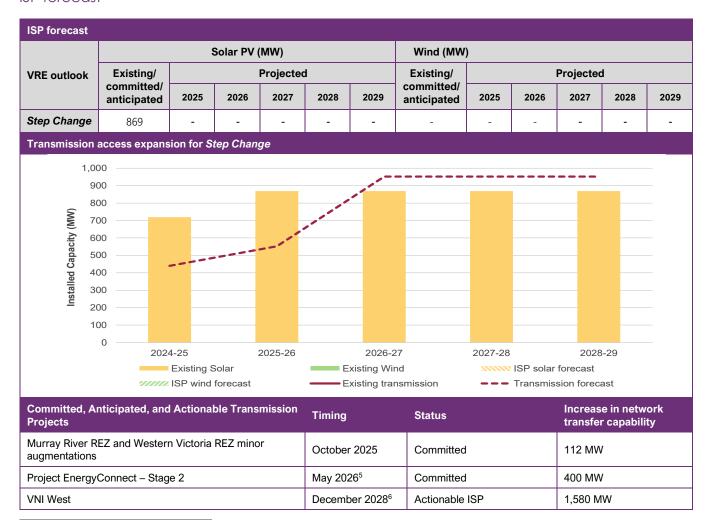
AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs⁴.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

³ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

⁴ The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (Victoria) Amendment (VicGrid) Act 2024. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

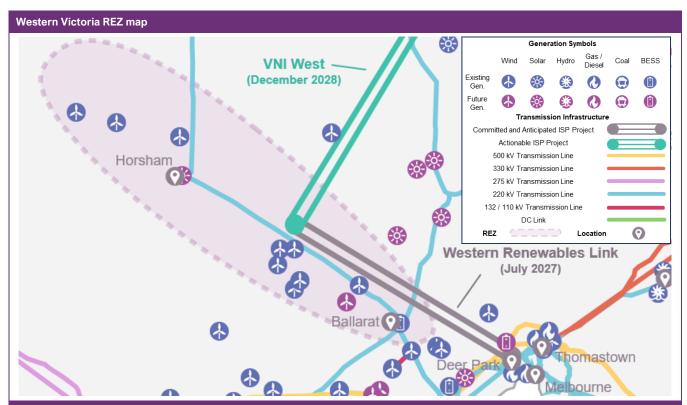

Resource metrics				
Resource	Solar	Wi	nd	
Resource Quality	С	E		
Renewable Potential (MW)	4,700	-		
Climate hazard				
Temperature score	Е	Bushfire score	С	

Marginal loss factors

Marginal Loss Factor						
Technology	Voltage (kV)	2024-25 MLF				
Solar	66	0.8506 - 0.8962				
	220	0.8363				

Congestion information – calend	Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
V^^V_NIL_KGTS & V^^V_NIL_KGTS_2	1,140.4	8,244,169.3	Generation in the area approximately bound by Broken Hill and Darlington Point in NSW and Ararat in VIC			
SVML^NIL_MH-CAP_ON	520.7	593,332.7	Generation contributing to Eastward flow on the Murraylink DC interconnector			
V>>NIL_ARWB_KGBE	255.3	2,349,117.2	Generation contributing to flow from Ararat to Waubra 220 kV upon trip of the Kerang-Bendigo 220 kV line			
V>>NIL_WBBA_RCWEKG	122.8	598,843.3	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Red Cliffs-Kerang 220 kV line			
V>>NIL_WBBA_KGBE	120.2	1,105,218.6	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of Kerang-Bendigo 220 kV line			
V>>NIL_BABE_HOMRKM	112.2	232,325.8	Generation contributing to flow from Ballarat to Bendigo 220 kV on trip of Horsham-Kiamal 220 kV line			
V>>NIL_ARWB_RCWEKG	100.1	316,894.8	Generation contributing to flow from Ararat to Waubra 220 kV on trip of Red Cliffs-Wemen-Kerang 220 kV line			
V>NIL_WETX_NIL	79.6	469,875.2	Generation exporting from 66 kV through the 220/66 kV Wemen transformers			
V^^SML_NIL_3	42.9	379,996.3	Generation in North West VIC and near Broken Hill in NSW			
V>>NIL_WBBA_RCBSS	27.7	200,185.0	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Red Cliffs-Buronga 220 kV line			
V>NIL_WBBA_KMRC	26.7	145,305.8	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Kiamal-Red Cliffs 220 kV line			
V>>NIL_WEKG_HOBUCW	20.1	225,906.0	Generation contributing to flow from Wemen to Kerang 220 kV on trip of the Horsham-Bulgana-Crowlands 220 kV line			
V^^SML_NSWRB_2	17.3	54,310.2	Generation in North West Victoria			

VRE semi-scheduled curtailment – calendar year 2023						
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BANN1	Bannerton	Solar Park	88	29.6	6.7	59,061
COHUNSF1	Cohuna So	olar Farm	27	0.0	0.0	5
GANNSF1	Gannawarra Solar Farm		50	2.3	0.3	2,485
KARSF1	Karadoc Solar Farm		90	10.5	2.6	22,511
KIAMSF1	Kiamal Solar Farm		200	7.3	3.2	28,406
WEMENSF1	Wemen Solar Farm		88	26.2	5.7	50,203
YATSF1	Yatpool Solar Farm		81	18.5	4.1	35,884
VRE curtailmen	t – ISP forecast					
	2025		2026		2027	
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	10%	19%	4%	18%	-	9%



⁵ Under the Draft 2024 ISP *Step Change* scenario, the project is modelled with a timing of July 2026.

⁶ Under the Draft 2024 ISP Step Change scenario, the project is modelled with a timing of July 2029.

A7.4 V3 – Western Victoria

REZ information

Overview

The Western Victoria REZ has B grade wind resource quality. The existing and committed renewable generation within this REZ exceeds 1 GW, all of which is from wind generation.

The Western Renewables Link (WRL) is an anticipated project, with the preferred option to expand generation within this zone.

REZ augmentation options shown take into account the change to the WRL scope as part of the VNI West RIT-T preferred option and assume 500 kV from Sydenham to Bulgana.

Network Transfer Capability

The current REZ transmission limits for existing and new VRE before any network upgrade in Western Victoria is split between two modelling constraints:

- V3 East:
 - Approximately 600 MW for peak demand and summer typical conditions and 800 MW for winter reference condition.
- V3 West:
 - Approximately 780 MW for peak demand and summer typical conditions and 980 MW for winter reference condition.

Network capacity is anticipated to be sufficient for existing and committed generation following completion of WRL. ⁷

Jurisdictional body

AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs⁸.

Generation Hosting capacity or access rights

Network capacity is anticipated to be sufficient for existing and committed generation following completion of WRL.

⁷ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

⁸ The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (Victoria) Amendment (VicGrid) Act 2024. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

Resource metrics					
Resource	Solar	Wi	nd		
Resource Quality	E	В			
Renewable Potential (MW)	400	2,600			
Climate hazard					
Temperature score	D	Bushfire score	D		

Marginal loss factors

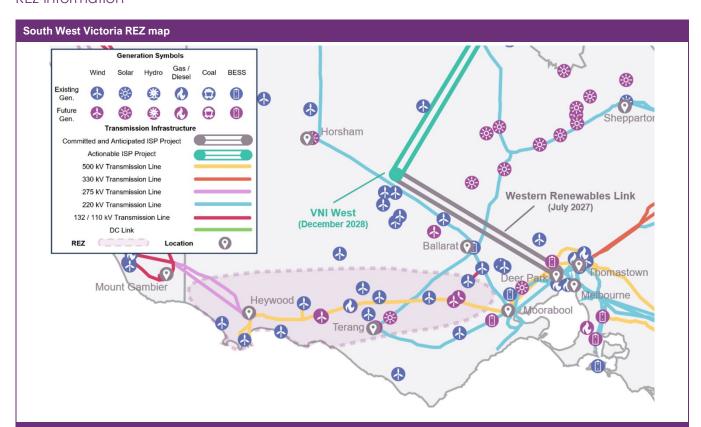
Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
Wind	66	0.8733 - 0.9718
	220	0.8619 - 0.9475

Congestion information – calend	ar year 2023		
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
V^^V_NIL_KGTS & V^^V_NIL_KGTS_2	1,140.4	8,244,169.3	Generation in the area approximately bound by Broken Hill and Darlington Point in New South Wales and Ararat in Victoria
V>>NIL_ARWB_KGBE	255.3	2,349,117.2	Generation contributing to flow from Ararat to Waubra 220 kV upon trip of the Kerang-Bendigo 220 kV line
V>>NIL_ELML_BAML2	219.1	138,556.2	Generation contributing to flow from Elaine to Moorabool 220 kV on trip of the Ballarat-Moorabool 220 kV No. 2 line
V>>NIL_WBBA_RCWEKG	122.8	598,843.3	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Red Cliffs-Kerang 220 kV line
V>>NIL_WBBA_KGBE	120.2	1,105,218.6	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of Kerang-Bendigo 220 kV line
V>>NIL_BABE_HOMRKM	112.2	232,325.8	Generation contributing to flow from Ballarat to Bendigo 220 kV on trip of Horsham-Kiamal 220 kV line
V>>NIL_ARWB_RCWEKG	100.1	316,894.8	Generation contributing to flow from Ararat to Waubra 220 kV on trip of Red Cliffs-Wemen-Kerang 220 kV line
V>>NIL_WBBA_RCBSS	27.7	200,185.0	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Red Cliffs-Buronga 220 kV line
V>NIL_WBBA_KMRC	26.7	145,305.8	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Kiamal-Red Cliffs 220 kV line
V>>NIL_WEKG_HOBUCW	20.1	225,906.0	Generation contributing to flow from Wemen to Kerang 220 kV on trip of the Horsham-Bulgana-Crowlands 220 kV line
V>>SML_NIL_7B	3.7	60,702.5	Generation contributing flow from Buangor to Ararat 66 kV on trip of the Ararat-Crowlands 220 kV line

VRE semi-scheduled curtailment – calendar year 2023									
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
ARWF1	Ararat Wind Farm	241	8.6	5.1	44,490				
BULGANA1	Bulgana Green Power Hub	204	1.1	0.6	5,573				

Step Change	1%	Economic offloading	1%	offloading 3%	1%	offloading 6%
Scenario			Curtailment	Economic	Curtailment	Economic
		2025	20)26	202	7
VRE curtailmer	nt – ISP forecast					
YENDWF1	Yendor	Wind Farm	142	0.2	0.1	653
MUWAWF2	Murra Warra V	Murra Warra Wind Farm Stage 2		5.0	3.7	32,157
MUWAWF1	Murra Wa	rra Wind Farm	226	5.2	4.0	34,727
MOORAWF1	Moorabo	ol Wind Farm	305	0.3	0.3	2,876
MERCER01	Mt Merce	er Wind Farm	131	2.8	1.1	9,778
KIATAWF1	Kiata V	Wind Farm	31	2.2	0.3	2,758
ELAINWF1	Elaine	Wind Farm	82	0.4	0.1	1,077
CROWLWF1	Crowland	ds Wind Farm	79	5.6	1.6	14,177

		:	Solar PV (MW)	Wind (MW)							
VRE outlook	Existing/		ļ	Projected	j		Existing/		Projected		d	
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	202
Step Change	119	-	-	-	-	-	1,935	-	-	-	700	700
Transmission	access expans	ion for S	tep Chang	ge								
2,0	00											
2,0										7////	////	
											/////////////////////////////////////	
§ 1,5	00 —							-///////		////	////	_
≥ >												
0,1 acit	00 —											
Installed Capacity (MW)						-						
lled												
5 العام	00 —											_
=												
	0											
	2024	4-25	2	2025-26		2026-27		2027-28		2028	-29	
		Existing S	Solar		E	kisting Win	d		ISP solar	forecast		
		ISP wind	_		_	kisting trans				sion foreca		


projections for V3 West (no VRE is built in V3 East).

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
Western Renewables Link	July 2027	Anticipated	1,460 MW
VNI West	December 2028 ⁹	Actionable ISP	200 MW

⁹ Under the Draft 2024 ISP *Step Change* scenario, the project is modelled with a timing of July 2029.

A7.5 V4 – South West Victoria

RF7 information

Overview

The South West Victoria REZ has grade C wind resource quality in close proximity to the 500 kV and 220 kV networks in the area. The total committed and in-service wind generation in the area exceeds 3 GW.

The Victorian Government has announced that VicGrid will provide a coordinated transmission connection point for offshore wind near Portland¹⁰.

VicGrid is currently undertaking consultation on the development of this infrastructure and AEMO will continue to co-ordinate with VicGrid on this matter.

Network Transfer Capability

The current REZ transmission limits for existing and new VRE before any network upgrade in South West Victoria are limited by voltage stability, and is modelled with the SWV1 group constraint. This limit is approximately 1,700 MW prior to commissioning of the Victorian Government RDP: Mortlake turn in project¹¹.

The Mortlake turn in increases the total network transfer capability by 1,100 at times of peak demand, and 1,500 MW at other times. This limit is expected to be refined for the final 2024 ISP.

Jurisdictional body

AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs¹².

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

¹⁰ See https://engage.vic.gov.au/project/offshore-wind-transmission-in-gippsland-and-portland/page/development-and-engagement-roadmap.

¹¹ RDP 1 – Stage 1: Mortlake turn in alleviates existing voltage constraint between Moorabool and Mortlake 500 kV Terminal Stations enabling 1,500 MW of additional generation output (https://www.gazette.vic.gov.au/gazette/Gazettes2022/GG2022S547.pdf). See https://aemo.com.au/media/files/electricity/nem/planning_and_forecasting/vapr/2022/2022-victorian-annual-planning-report.pdf?la=en.

¹² The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (*Victoria*) *Amendment* (*VicGrid*) *Act 2024*. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

Resource metrics										
Resource Solar Wind										
Resource Quality	Quality F C									
Renewable Potential (MW)	-	3,4	42							
Climate hazard										
Temperature score	С	Bushfire score	D							

Marginal loss factors

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
Wind	66	0.9388 - 0.9993
	220	0.9315 - 0.9430
	500	0.9781 - 0.9812


Congestion information – calend	ar year 2023		
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
V>>NIL_ELML_BAML2	219.1	138,556.2	Generation contributing to flow from Elaine to Moorabool 220 kV on trip of the Ballarat-Moorabool 220 kV No. 2 line
V^^V_NIL_SWVIC	192.5	93,906.2	Generation connected to Moorabool to Heywood 500 kV flow path
V:S_600_HY_TEST	172.1	177,314.0	Generation contributing to flow from Heywood to South East 275 kV
V:S_600_HY_TEST_DYN	161.5	414,784.4	Generation contributing to flow from Heywood to South East 275 kV
V::S_NIL_MAXG_xxx	34.8	92,210.6	Generation connecting to 132 kV network between South East and Tailem Bend

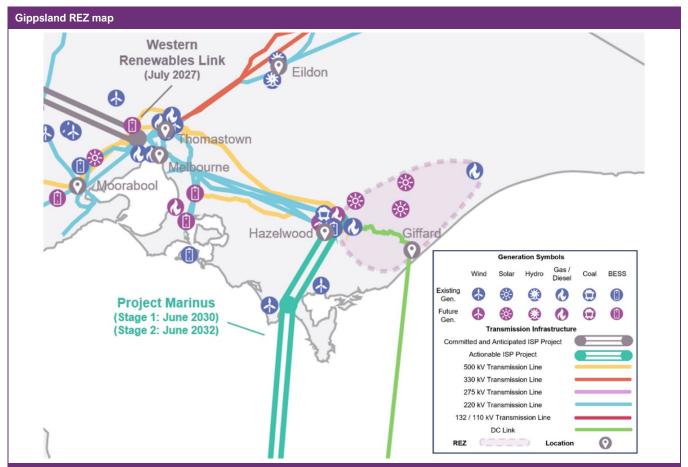
VRE semi-sche	duled curtailment – calendar year 202	3			
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BRYB1WF1	Berrybank Wind Farm	176	0.8	0.5	4,438
BRYB2WF2	Berrybank 2 Wind Farm	105	3.1	0.9	7,882
DUNDWF1	Dundonnell Wind Farm	168	0.0	0.0	76
DUNDWF2	Dundonnell Wind Farm	46	0.1	0.0	125
DUNDWF3	Dundonnell Wind Farm	122	0.1	0.0	321
MACARTH1	Macarthur Wind Farm	420	0.5	0.5	4,486
MRTLSWF1	Mortlake South Wind Farm	153	0.3	0.1	788
MTGELWF1	Mt Gellibrand Wind Farm	66	0.2	0.1	503
OAKLAND1	Oaklands Hill Wind Farm	63	0.1	0.0	129
SALTCRK1	Salt Creek Wind Farm	54	0.2	0.0	300
STOCKYD1	Stockyard Hill Wind Farm	511	0.7	1.4	12,691

VRE curtailmen	VRE curtailment – ISP forecast											
	20	25	20	26	2027							
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading						
Step Change	_13	6%	-	3%	-	4%						

ISP forecast												
		5	Solar PV (MW)			Wind (MW)				
VRE outlook	Existing/		Projected			Existing/		ı	Projected	I		
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	3,246	-	-	450	450	800

Note: The transmission access expansion forecasts show the results for SWV1 group constraint augmentation, which includes VRE projections for V4 and V8.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability ¹⁴
Mortlake Turn-In	October 2025	Committed	1,500 MW
South West VIC REZ minor augmentations	December 2024 ¹⁵	Committed	81 MW


¹³ V4 and V8 are both modelled behind the SWV1 group constraint which is forecast to have curtailment of 4% in 2025, 0% in 2026, and 0% in 2027.

¹⁴ Total REZ network limit increase in V4 and V8 combined.

¹⁵ Under the Draft 2024 ISP *Step Change* scenario, the project is modelled in 2025-26.

A7.6 V5 – Gippsland

RF7 information

Overview

The Gippsland REZ has C grade wind resource quality, in proximity to the $500\ kV$ networks.

The Victorian Government has announced that VicGrid will provide a coordinated transmission connection point near the Gippsland Coast 16.

VicGrid is currently undertaking consultation on the development of this infrastructure and AEMO will continue to co-ordinate with VicGrid on this matter

Network Transfer Capability

The transmission limit of the Gippsland REZ is included in the 'SEVIC1' group constraint which also includes VRE generation from V7 (Gippsland Coast), existing generation at Loy Yang and Hazelwood 500 kV substations, and import from Tasmania to Victoria, and has a 6,000 MW limit.

The SEVIC1 limit does not include the potential for connection of new generation at the Yallourn 220 kV substation. This may change as Latrobe Valley operating modes is under review.

Due to the high capacity of the network in this REZ (with four 500 kV and six 220 kV lines from Latrobe Valley to Melbourne designed to transport energy from major Victorian brown coal power station), significant generation can be accommodated.

Jurisdictional body

AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs¹⁷.

¹⁶ See Offshore Wind Transmission Development and Engagement Roadmap | Offshore Wind Transmission in Victoria | Engage Victoria .

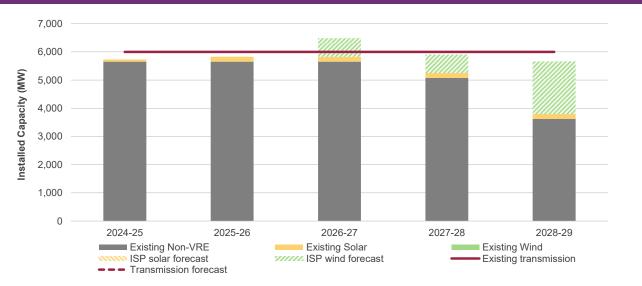
¹⁷ The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (*Victoria) Amendment* (*VicGrid*) Act 2024. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

Resource metrics					
Resource	Solar	Wind			
Resource Quality	Е	С			
Renewable Potential (MW)	500	2,000			
Climate hazard					
Temperature score	С	Bushfire score	D		

Marginal loss factors

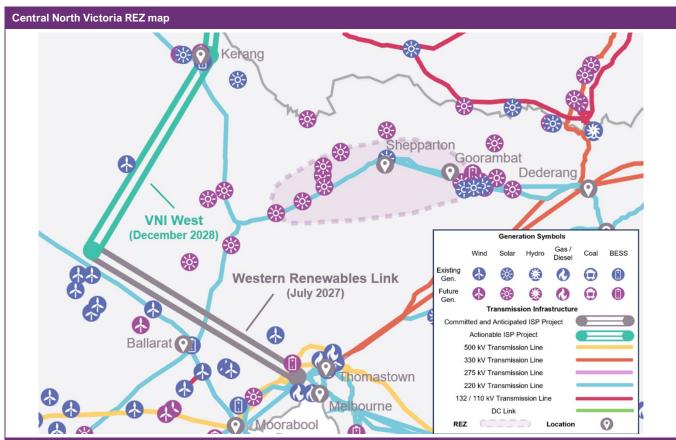

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
-	-	-

Congestion information – calendar year 2023							
(Constraint II)		Marginal value (\$)	Most affected generation				
T^V_NIL_9	24.6	10,562.5	Generation contributing to northward flow on Basslink				

VRE semi-sche	duled curtailment –	calendar year 2023	:				
DUID	Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)	
-	-				-	-	
VRE curtailmen	t – ISP forecast						
	2025		20	026	2027		
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading	
Step Change	-	8%	-	10%	-	7%	

ISP forecast												
	Solar PV (MW)					Wind (MW)						
VRE outlook	Existing/		Projected				Existing/	Projected				
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	27 2028	2029
Step Change	174	-	-	-	-	-	-	-	-	650	650	1,850

Transmission access expansion for Step Change



Note: The transmission access expansion forecasts show the results for SEVIC1 group constraint augmentation, which includes VRE projections for V5 and V7 as well as the effect of Basslink and Project Link flows between Tasmania and Victoria.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A7.7 V6 – Central North Victoria

REZ information

Overview

The Central North Victoria REZ has grade C and D solar and wind resource quality. In addition to the currently in service and committed solar farms, there are enquires for over 1 GW of additional solar.

Network Transfer Capability

The current REZ transmission limits for existing and new VRE before any network upgrade in Central North Victoria are approximately 650 MW for peak demand and summer typical conditions and 1,300 MW for the winter reference condition. ¹⁸

Jurisdictional body

AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs¹⁹.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

Resource metrics		
Resource	Solar	Wind
Resource Quality	С	D
Renewable Potential (MW)	1.700	1.600

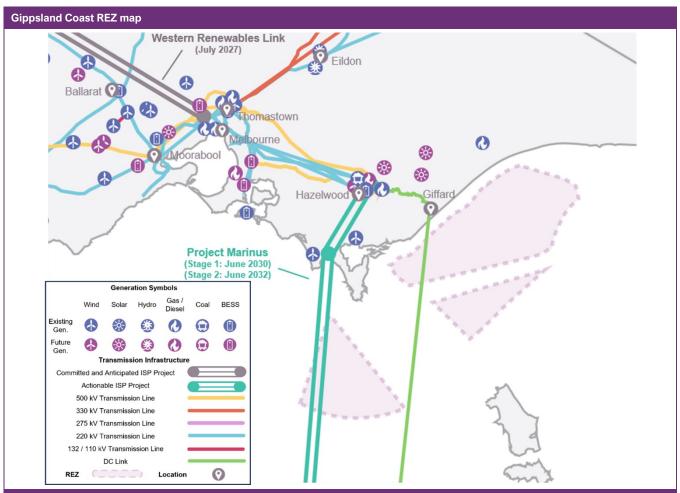
¹⁸ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

¹⁹ The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the National Electricity (Victoria) Amendment (VicGrid) Act 2024. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

Marginal loss factors

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
Outer	66	0.9455 - 0.9477
Solar	220	0.9626

Congestion information – calendar year 2023								
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation					
N^^N_NIL_X5_xxx	1,041.3	7,527,221.4	Generation contributing to flow from Balranald to Darlington Point 220 kV on trip of the Bendigo-Shepparton 220 kV line					


DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
GLENSF1	Glenrowan	Solar Farm	102	0.3	0.0	13	
GLRWNSF1	Glenrowan West Solar Farm		110	0.1	0.0	133	
NUMURSF1	Numurkah Solar Farm		100	0.2	0.0	356	
WINTSF1	Winton Solar Farm		85	0.0	0.0	79	
VRE curtailmen	t – ISP forecast						
	20	25	2	026	2027		
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading	
Step Change	-	2%	-	5%	-	11%	

VRE outlook			Solar PV	(MW)			Wind (MW))				
				Projected	ı		Existing/			Projected	l	
	committe		2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	202
Step Change	555	-	-	-	-	-	-	-	-	-	-	-
[ransmissi	on access exp	ansion for S	tep Chan	ige								
	700 —											
	600						_					
MW)	500 ——											
city (400 ——											_
Installed Capacity (MW)	300 ——											
) pell	300 ——											
nsta	200 ——											_
_	100 ———											_
	0											
		2024-25 202				2026-2	7	2027-28		2028	-29	
	-	Existing Solar				kisting Win			ISP solar			
	90	ISP wind forecast				Existing transmission			Transmission forecast			

Committed, Anticipated, and Actionable Transmission Projects		Timing	Status	Increase in network transfer capability	
	Victoria Central North REZ minor augmentations	October 2025	Committed	12 MW	

A7.8 V7 – Gippsland Coast

REZ information

Overview

The Gippsland Coast REZ has been identified for offshore wind resource potential in relatively shallow waters, with a connection point close to existing 500 kV networks at Loy Yang/Hazelwood. There is currently significant interest in this area, but proposed projects have not developed sufficiently to be considered anticipated.

The Victorian Government has announced that VicGrid will provide a coordinated transmission connection point near the Gippsland Coast. New transmission lines will also be developed where needed to link the common connection points with the existing energy grid.

VicGrid is currently undertaking consultation on the development of this infrastructure and AEMO will continue to co-ordinate with VicGrid on this matter.

Network Transfer Capability

Gippsland offshore REZ requires connection to the 500 kV network in the Gippsland REZ, and is modelled as part of the SEVIC1 group constraint which also includes VRE generation from V5 (Gippsland), existing generation at Loy Yang and Hazelwood 500 kV substations, and import from Tasmania to Victoria, and has a 6,000 MW limit. ²⁰

²⁰ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Jurisdictional body	Reference	Function				
AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs ²¹ .						
Offshore Wind Energy Victoria (OWEV) ²²	-	Part of the Department of Energy, Environment and Climate Action, OWEV is responsible in is coordinating the work streams to support the industry's development.				

Generation Hosting capacity or access rights

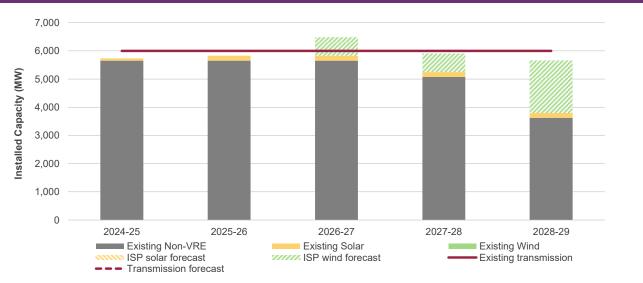
There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

Resource metrics			
Resource	Offshore Wind (fixed)	Offshore Wi	nd (floating)
Resource Quality	А	Į.	4
Renewable Potential (MW) 54,996 5,000			
Climate hazard			
Temperature score	С	Bushfire score	D

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2024-25 MLF			
-	-	-			

Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
-	-	-	-		

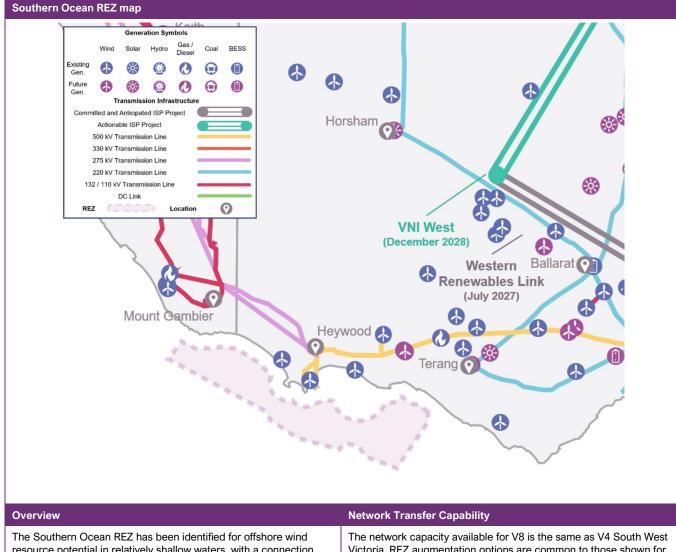

VRE semi-scheduled curtailment – calendar year 2023							
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
-	-		-	-	-	-	
VRE curtailmen	t – ISP forecast						
	2025		2026		2027		
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading	
Step Change	-	-	-	-	-	-	

²¹ The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (*Victoria*) *Amendment* (*VicGrid*) *Act 2024*. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

 $^{^{22}\,} See \,\, \underline{https://www.energy.vic.gov.au/renewable-energy/offshore-wind-energy.}$

ISP forecast												
	Solar PV (MW)						Wind (MW)					
VRE outlook	VRE outlook Existing/ committed/ anticipated	Projected			Existing/	•						
		2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-

Transmission access expansion for Step Change



Note: The transmission access expansion forecasts show the results for SEVIC1 group constraint augmentation, which includes VRE projections for V5 and V7 as well as the effect of Basslink and Project Link flows between Tasmania and Victoria.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A7.9 V8 - Southern Ocean

REZ information

resource potential in relatively shallow waters, with a connection point close to existing 500 kV networks at APD/Heywood.

The Victorian Government has announced that VicGrid will provide a coordinated transmission connection point near Portland²³.

VicGrid is currently undertaking consultation on the development of this infrastructure and AEMO will continue to co-ordinate with VicGrid on this matter.

Victoria. REZ augmentation options are common to those shown for V4 and V8, and has been modelled as part of the SWV1 group constraint. 24

²³ See https://www.energy.vic.gov.au/ data/assets/pdf_file/0030/603399/The-Victorian-Offshore-Wind-Implementation-Statement-1.pdf .

²⁴ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/ 2023-iasr-assumptions-workbook.xlsx?la=en.

Jurisdictional body	Reference	Function			
AEMO Victorian Planning is the jurisdictional planning body for Victoria's electricity transmission network. The CEO, VicGrid is responsible for specified REZ planning functions in relation to current and potential REZs ²⁵ .					
Offshore Wind Energy Victoria (OWEV) ²⁶		Part of the Department of Energy, Environment and Climate Action, OWEV is responsible in is coordinating the work streams to support the industry's development.			

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. Following the recent introduction of the National Electricity (Victoria) Amendment (VicGrid) Act 2024 if, through a Ministerial Order, an area of Victoria has been declared as a REZ, then the intended hosting capacity within the REZ will be reported in future publications.

Resource metrics						
Resource	Offshore Wind (fixed)	Offshore Wi	nd (floating)			
Resource Quality	А	,	4			
Renewable Potential (MW)	3,948	16,596				
Climate hazard						
Temperature score	С	Bushfire score	D			

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2024-25 MLF			
-	-	-			

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
-	-	-	-			

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generate	or name	Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)		
-	-		-	-	-	-		
VRE curtailment – ISP forecast								
	20	25	20	026	2027			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	_27	-	-	-	-	-		

²⁵ The REZ planning functions are specified in section 53(1)(a) of the National Electricity (Victoria) Act, inserted by the *National Electricity* (*Victoria) Amendment* (*VicGrid*) Act 2024. See https://www.legislation.vic.gov.au/in-force/acts/national-electricity-victoria-act-2005/035. These functions will be performed through the preparation of a Victorian transmission plan and guidelines.

²⁶ See https://www.energy.vic.gov.au/renewable-energy/offshore-wind-energy.

²⁷ V4 and V8 are both modelled behind the SWV1 group constraint which is forecast to have curtailment of 4% in 2025, 0% in 2026, and 0% in 2027.

ISP forecast												
VRE outlook	Solar PV (MW)					Wind (MW)						
	Existing/ committed/ anticipated	Projected				Existing/	Projected					
		2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-

Transmission access expansion for Step Change

Note: The transmission access expansion forecasts show the results for SWV1 group constraint augmentation, which includes VRE projections for V4 and V8.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability ²⁸
Mortlake Turn-In	October 2025	Committed	1,500 MW
South West VIC REZ minor augmentations	December 2024 ²⁹	Committed	81 MW

²⁸ Total REZ network limit increase in V4 and V8 combined.

²⁹ Under the Draft 2024 ISP *Step Change* scenario, the project is modelled in 2025-26.

A7.10 Non-REZ

Congestion information – calendar year 2023							
Constraint ID	Binding Marginal hours value (\$)		Most affected generation				
V^^N_NIL_1	585.0	435,325.3	Generation in South-West New South Wales, North-West Victoria and North-East Victoria				
V::N_NIL_xxx	321.4	148,210.4	Victorian generation, via limitation of Victorian export				

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)			
BALDHWF1	Bald Hills Wind Farm	106	0.0	0.0	15			
CHYTWF1	Cherry Tree Wind Farm	57	0.0	0.0	0			