

2024 ELI Report Appendix 6. Tasmania

June 2024

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 30 April 2024, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2024 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

Version	Release date	Changes
1.0	07/06/2024	Initial release.

AEMO acknowledges the Traditional Owners of country throughout Australia and recognises their continuing connection to land, waters and culture. We pay respect to Elders past and present.

Contents

A6.1	Introduction	4
A6.2	T1 – North East Tasmania	5
A6.3	T2 – North West Tasmania	8
A6.4	T3 – Central Highlands	11
A6.5	T4 – North West Tasmania Coast	14
A6.6	T5 – North East Tasmania Coast	16
A6.7	Non-REZ	18

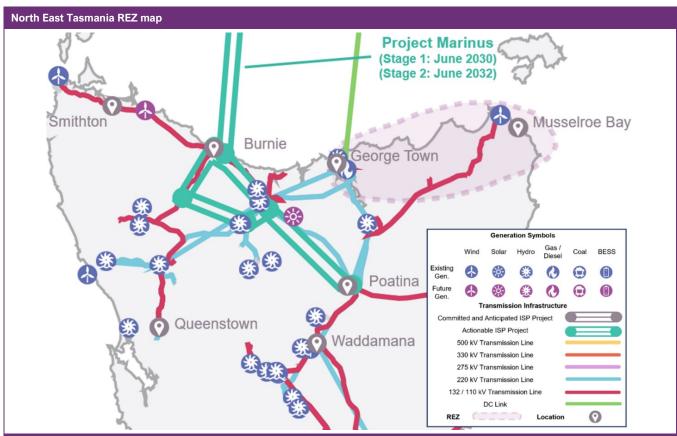
Figures

Figure 1 Overview of Tasmania region and REZs 4

Figure 1

A6.1 Introduction

Overview of Tasmania region and REZs


This appendix provides detailed locational indicators and metrics for each REZ within Tasmania. Figure 1 provides an overview map of the Tasmania region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout this appendix.

This appendix uses existing sources of publicly available information which includes the Draft 2024 ISP. Some of this information may change with the publication of the Final 2024 ISP in June 2024.

Project Marinus (Stage 1: June 2030) (Stage 2: June 2032) **T4 North East Tasmania Coast** T1 **North East T2 Tasmania North West Tasmania** Generation Symbols **T3** BESS Hydro Central Existing (1) 0 **Highlands** Future 0 Transmission Infrastructure Committed and Anticipated ISP Project Actionable ISP Project 500 kV Transmission Line 330 kV Transmission Line 275 kV Transmission Line 220 kV Transmission Line 132 / 110 kV Transmission Line 0

A6.2 T1 – North East Tasmania

REZ information

Overview

This REZ has a B grade wind resource quality. North East Tasmania is remote from the actionable Project Marinus and therefore upgrades are less influenced by its status.

Network Transfer Capability

The current network transfer capability is 400 MW1.

The capability of this zone to accommodate new generation is subject to the NET1 northeast Tasmania group constraint.

Jurisdictional body

TasNetworks is the jurisdictional planning body for this REZ.

Generation Hosting capacity or access rights

TasNetworks has estimated the hosting capacity of this REZ to be 400 MW².

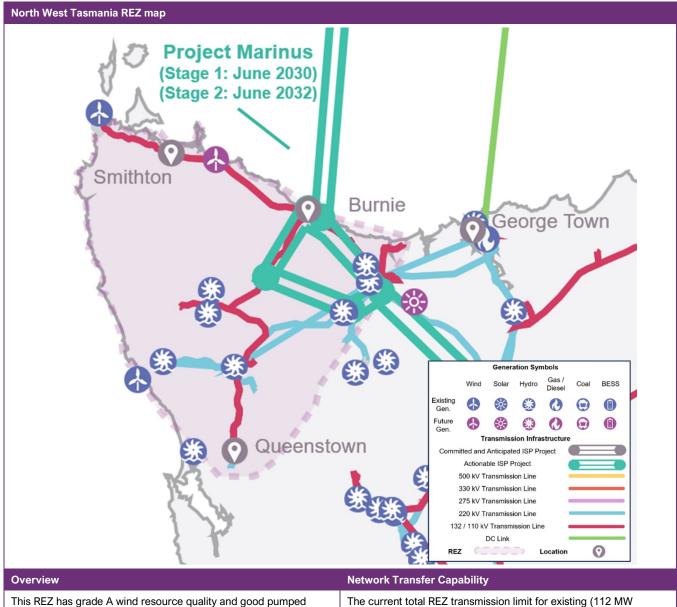
Resource metrics								
Resource	Solar	Wind						
Resource Quality	Е	В						
Renewable Potential (MW)	300	1,400						
Climate hazard								
Temperature score	Α	Bushfire score B						

¹ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

² Section 3.5, 2023 TAPR, TasNetworks, at https://www.tasnetworks.com.au/config/getattachment/c01e26ee-4c82-4dce-b0c5-8b4426fbd9d4/tasnetworks_annual_planning_report_2023.pdf.

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
Wind	110	0.9199

Congestion information – calendar year 2023									
Constraint ID Binding hours		Marginal value (\$)	Most affected generation						
T>T_NIL_110_1	35.0	25,615.8	Generation contributing to flow from Derby to Scottsdale Tee 110 kV						
T^V_NIL_9	24.6	10,562.5	Generation contributing to northward flow on Basslink						


VRE semi-scheduled curtailment – calendar year 2023										
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
-	-				-	-				
VRE curtailmer	nt – ISP forecast									
	20)25	20	026	2027					
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading				
Step Change	-	-	-	-	-	1%				

ISP forecast

		Solar PV (MW)							Wind (MW)					
VRE outlook		Existing/	Projected					Existing/			Projected	t		
		mmitted/ nticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	202	
Step Change		-	-	-	-	-	-	-	-	-	50	50	50	
Transmissi	on acc	ess expans	ion for S	tep Chan	ge									
	450												_	
	400	•											_	
installed Capacity (MW)	350												_	
	300												_	
oacity													_	
d Cap	200												_	
stalle														
<u>n</u>	100												_	
	50						//////	<u></u>	////////		'////	////	_	
	0	2024	1-25		2025-26		2026-2	<u>//</u> 27	2027-28	ă	2028	3-29		
			Existing S	Solar		E	xisting Wi	nd		ISP solar	forecast			
		971111	ISP wind	forecast		E	xisting trai	nsmission		Transmis	sion forec	ast		
Committed	. Antic	ipated, and	Actional	hle		Timing		Status			Increas	e in netw	ork	

A6.3 T2 – North West Tasmania

REZ information

hydro resources. Timing of the North West Tasmania REZ augmentation options are highly dependent on Project Marinus.

The current total REZ transmission limit for existing (112 MW Granville Harbour wind farm) and new VRE before any network upgrade in North West Tasmania is approximately 277 MW for peak demand and summer typical conditions and 112 MW for winter reference condition.³

This REZ is affected by voltage stability constraints for VRE connection at Farrell 220 kV substation. Future REZ generators are assumed to have a runback scheme in place to reduce generation output post contingency to within network capacity for lines currently covered by the Network Control System Protection Scheme (NCSPS), but not for new transmission lines.

³ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Jurisdictional body								
TasNetworks is the jurisdictional planning body for this REZ.								
Generation Hosting capacity or access rights								
TasNetworks has estimated the hosting capacity of this REZ to be 340 MW ⁴ .								
Resource metrics								
Resource	Solar	Wind						
Resource	Julai	***	na					
Resource Quality	F	,						
13333333			A					
Resource Quality	F	,	A					

Marginal Loss Factor								
Technology	Voltage (kV)	2024-25 MLF						
Wind	110	0.8951						
vviiiu	220	0.9473						

Congestion information – calendar year 2023									
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation						
T::T_NIL_1	1,650.0	578,313.3	Generation contributing to flow from Farrell to Sheffield 220 kV						
T::T_NIL_3	65.7	24,081.3	Generation contributing to flow from Sheffield to Palmerston 220 kV and George Town to Palmerston 220 kV						
T>>T_NIL_BL_EXP_7C	34.8	14,882.8	Generation contributing to flow from Farrell to Sheffield 220 kV						

VRE semi-scheduled curtailment – calendar year 2023										
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
GRANWF1	Granville Harbo	our Wind Farm	111	0.3	0.1	1,020				
VRE curtailmen	t – ISP forecast									
	20	25	2	026	2027					
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading				
Step Change	-			-	-	3%				

 $^{^4 \} Section \ 3.5, 2023 \ TAPR, \ TasNetworks, \ at \ \underline{https://www.tasnetworks.com.au/config/getattachment/c01e26ee-4c82-4dce-b0c5-8b4426fbd9d4/tasnetworks_annual_planning_report_2023.pdf.$

50 0

2024-25

Existing Solar

ISP wind forecast

ISP forecast

		Solar PV (MW)					Wind (MW)					
VRE outlook	Existing/					Existing/	Projected					
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
tep Change	-	-	-	-	-	-	112	-	-	-	-	200
ransmission	access expans	ion for S	tep Chan	ge								
5	500											
4	50											
	.00											
M 3	50								-	•		_
3 it	300									000	<i>'''</i>	_
2 aba	50									////	<i>////</i>	_
Installed Capacity (MW)	200 ———									{////	///	
1 stall	50									{////	/// _/	_
<u><u> </u></u>	00						***					

Note: The network expansion for T2 comes from the linearisation of the REZ build in the Draft 2024 ISP⁵.

2026-27

Existing transmission

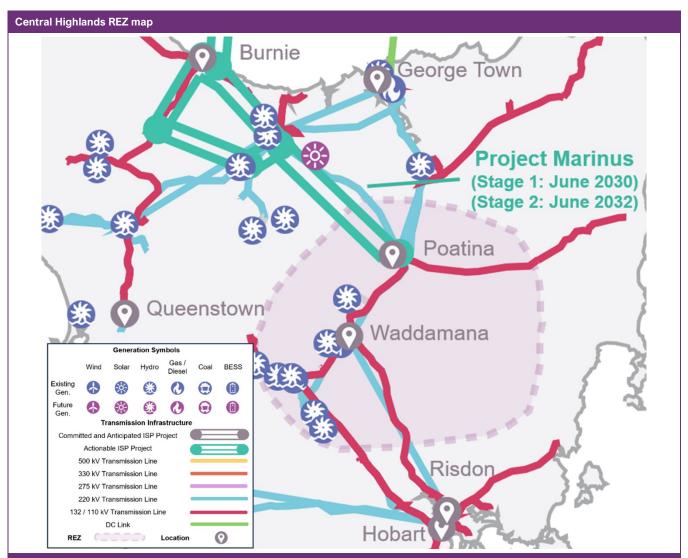
Existing Wind

2027-28

ISP solar forecast

--- Transmission forecast

2028-29


2025-26

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

⁵ See Section 2.4.6 of the ISP Methodology, at https://www.aemo.com.au/-/media/files/stakeholder_consultations/consultations/nem-consultations/2023/isp-methodology-2023/isp-methodology_june-2023.pdf?la=en.

A6.4 T3 – Central Highlands

REZ information

Overview

This REZ has grade A wind resource quality and has good pumped hydro resources. It is located close to major load centres at Hobart. Timing of the Tasmania Central Highlands REZ augmentation options is influenced by the timing of Project Marinus augmentations.

Network Transfer Capability

The current total REZ transmission limit for existing (144 MW Wild Cattle Hill wind farm) and new VRE before any network upgrade in the Central Highlands is approximately 527 MW for peak demand and summer typical conditions and 668 MW for winter reference condition. ⁶ VRE development opportunities are anticipated around the Waddamana substation.

Note that a runback scheme is not considered for any new transmission lines.

Jurisdictional body

TasNetworks is the jurisdictional planning body for this REZ.

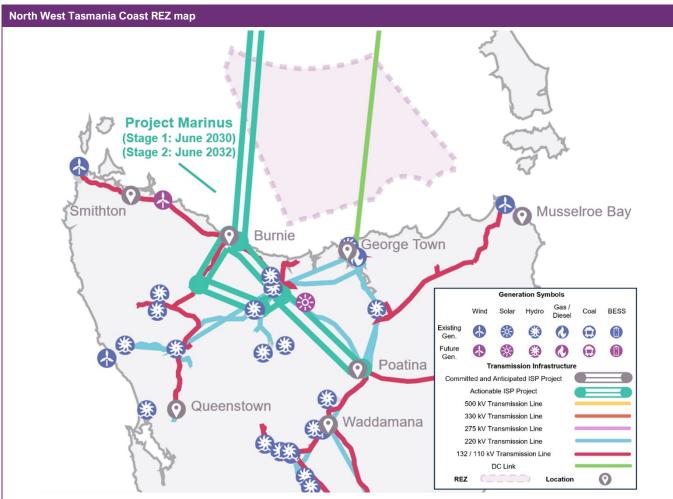
⁶ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Generation Hosting capacity or access rights										
TasNetworks has estimated the hosting capacity of this REZ to be 530 MW ⁷ .										
Resource metrics										
Resource	Resource Solar Wind									
Resource Quality	F	,	4							
Renewable Potential (MW)	150	3,4	.00							
Climate hazard										
Temperature score A Bushfire score D										

Marginal Loss Factor									
Technology	Voltage (kV)	2024-25 MLF							
Wind	220	0.9908							

Congestion information – calendar year 2023											
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation								
T::T_NIL_3	65.7	24,081.3	Generation contributing to flow from Sheffield to Palmerston 220 kV								

VRE semi-scheduled curtailment – calendar year 2023											
DUID	Generat	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)					
CTHLWF1	Cattle Hill Wind Farm		Cattle Hill Wind Farm 144 0.0		0.0	91					
VRE curtailmen	t – ISP forecast										
	20	25	20	026	2027						
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading					
Step Change	-	-	-	-	1%	3%					


⁷ Section 3.5, 2023 TAPR, TasNetworks, at https://www.tasnetworks.com.au/config/getattachment/c01e26ee-4c82-4dce-b0c5-8b4426fbd9d4/tasnetworks_annual_planning_report_2023.pdf.

ISP forecast

			:	Solar PV	(MW)			Wind (MW))				
VRE outloo		xisting/			Projected	ı		Existing/			Projected	t	
		mmitted/ ticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	202
Step Change		-	-	-	-	-	-	144	-	-	600	600	600
Transmissi	on acc	ess expans	ion for S	tep Chan	ge								
	800												_
	700						_//////		<i>\\\\\\\</i>			///	_
S	600											///	
installed Capacity (MW)	500	•						<u></u>				///	
pacit	400												
d Ca												/////////////////////////////////////	
stalle	300												
드	200												_
	100												_
	0	2024	l-25		2025-26		2026-27	7	2027-28		2028	3-29	_
			Existing 9	Solar		E:	xisting Wind	d	anno	ISP solar	forecast		
		1111111	ISP wind	forecast		——E	xisting trans	smission		Transmis	sion forec	ast	
		pated, and	• 4:									e in netw	

A6.5 T4 – North West Tasmania Coast

RF7 information

Note: AEMO has updated the REZ boundary for T4 in alignment with the Bass Strait, Northern Tasmania proposed offshore REZ⁸. Draft 2024 ISP results are modelled on existing T4 and T5 input parameters; recent updates will be incorporated in future.

Overview

The North West Tasmania Coast REZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point close to existing 220 kV networks.

Network Transfer Capability

North West Tasmania coast REZ connects to the 220 kV network within the North West REZ (T2). The total REZ transmission network limit for existing and new VRE is included as part of the North West REZ limit of approximately 277 MW for peak demand and summer typical conditions and 112 MW for winter reference condition. ⁹

Jurisdictional body

TasNetworks is the jurisdictional planning body for this REZ.

Generation Hosting capacity or access rights

Generation connecting in the T4 REZ is considered together with the T2 REZ for a combined hosting capacity of 340 MW¹⁰.

⁸ At https://consult.dcceew.gov.au/oei-bass-strait.

⁹ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

¹⁰ Section 3.5, 2023 TAPR, TasNetworks, at https://www.tasnetworks.com.au/config/getattachment/c01e26ee-4c82-4dce-b0c5-8b4426fbd9d4/tasnetworks_annual_planning_report_2023.pdf.

Resource metrics						
Resource	Offshore Wind (fixed)	Offshore Wind (floating)				
Resource Quality A A						
Renewable Potential (MW)	16,624	6,912				
Climate hazard						
Temperature score	А	Bushfire score	A			

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
-	-	-

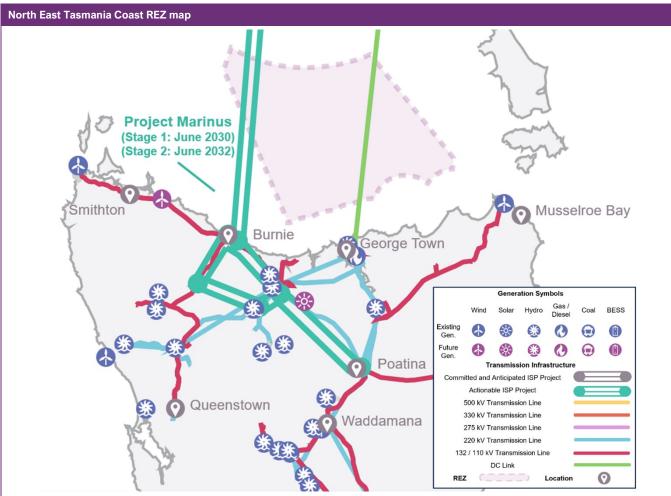
Congestion and curtailment

Congestion information – calendar year 2023											
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation								
-	-	-	-								

VRE semi-scheduled curtailment – calendar year 2023										
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
VRE curtailmer	t – ISP forecast									
	20	25	20)26	2027					
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading				
Step Change	Change		-	-	1%	3%				

ISP forecast

ISP forecast	SP forecast													
		;	Solar PV (MW)			Wind (MW)							
VRE outlook Existing/	Projected					Existing/		ı	Projected	i				
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029		
Step Change	-	-	-	-	-	-	-	-	-	-	-	-		


Transmission access expansion for Step Change

There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A6.6 T5 – North East Tasmania Coast

REZ information

Note: AEMO has updated the REZ boundary for T4 in alignment with the Bass Strait, Northern Tasmania proposed offshore REZ¹¹. Draft 2024 ISP results are modelled on existing T4 and T5 input parameters; recent updates will be incorporated in future.

Overview

The North East Tasmania Coast REZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point close to the existing 220 kV George Town substation.

There is interest from offshore wind proponent in this REZ but no proposed projects are sufficiently progressed to be considered as anticipated or committed by AEMO's criteria.

Network Transfer Capability

North East Tasmania Coast REZ connects to the 220 kV network within the North East REZ in the vicinity of George Town. The total REZ transmission network limit for existing and new VRE is included as part of the North East Tasmania NET1 group constraint with a combined network limit of 1,600 MW for offshore wind and onshore VRE from T1. 12

Jurisdictional body

TasNetworks is the jurisdictional planning body for this REZ.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

¹¹ At https://consult.dcceew.gov.au/oei-bass-strait.

¹² See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics							
Resource Offshore Wind (fixed) Offshore Wind (floating)							
Resource Quality	A A						
Renewable Potential (MW)	19,212 4,544						
Climate hazard							
Temperature score	A	Bushfire score	В				

Marginal Loss Factor							
Technology	Voltage (kV)	2024-25 MLF					
-	-	-					

Congestion and curtailment

Congestion information – calendar year 2023							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generat	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
-	-		-	-	-	-		
VRE curtailmer	nt – ISP forecast							
	20	25	20	20	27			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	-	-	-	-	-	-		

ISP forecast

ISP forecast												
		Solar PV (MW)										
VRE outlook	Existing/	Projected			Existing/	Projected						
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-

Transmission access expansion for Step Change

There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A6.7 Non-REZ

Congestion information – calendar year 2023							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2023							
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
MUSSELR1	Musselroe Wind Farm	168	0.5	0.3	2,825		