

Appendix 3. New South Wales

June 2024

Appendix to the 2024 Enhanced Locational Information Report

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 30 April 2024, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2024 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

Version	Release date	Changes
1.0	07/06/2024	Initial release.

AEMO acknowledges the Traditional Owners of country throughout Australia and recognises their continuing connection to land, waters and culture. We pay respect to Elders past and present.

Contents

A3.1	Introduction	4
A3.2	N1 – Northwest New South Wales	5
A3.3	N2 – New England	7
A3.4	N3 – Central West Orana	10
A3.5	N4 – Broken Hill	13
A3.6	N5 – South West New South Wales	16
A3.7	N6 – Wagga Wagga	19
A3.8	N7 – Tumut	22
A3.9	N8 – Cooma-Monaro	24
A3.10	N9 – Hunter-Central Coast	26
A3.11	N10 – Hunter Coast	29
A3.12	N11 – Illawarra Coast	31
A3.13	N12 – Illawarra	33
A3.14	Non-REZ	35

Figures

	Figure 1	Overview of New South Wales region and REZs	4
--	----------	---	---

A3.1 Introduction

This appendix provides detailed locational indicators and metrics for each REZ within New South Wales. Figure 1 provides an overview map of the New South Wales region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout this appendix.

This appendix uses existing sources of publicly available information which includes the Draft 2024 ISP. Some of this information may change with the publication of the Final 2024 ISP in June 2024.

Figure 1 Overview of New South Wales region and REZs

A3.2 N1 – Northwest New South Wales

REZ information

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2024-25 MLF			
Online	66	0.8086			
Sular	132	0.8394			

Congestion and curtailment

Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
N>NIL_969	1,644.8	19,375,989.8	Generation contributing to flow from Gunnedah to Tamworth 132 kV		

VRE semi-scheduled curtailment – calendar year 2023						
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
GNNDHSF1	Gunnedah Solar Farm		110	11.6	3.8	33,417
MOREESF1	Moree Solar Farm		56	0.1	0.0	77
VRE curtailment and economic offloading – ISP forecast						
	2025		2026		2027	
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	-	7%	-	4%	-	14%

A3.3 N2 – New England

REZ information

¹ Options shown are a subset of the Central New South Wales to Northern New South Wales flow path options.

- ⁴ See <u>https://www.energyco.nsw.gov.au/industry/network-infrastructure-strategy-nsw.</u>
- ⁵ AEMO Services Tenders, at https://aemoservices.com.au/tenders.

² See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at <u>https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en</u>.

³ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics					
Resource	Solar	Wi	nd		
Resource Quality	С	(0		
Renewable Potential (MW)	2,985 ⁶	7,400			
Climate hazard					
Temperature score	С	Bushfire score	E		

Marginal loss factors

Marginal Loss Factor				
Technology	Voltage (kV)	2024-25 MLF		
Color	132	0.8453 - 0.8668		
Solar	330	0.8901		
Wind	132	0.8453		
WING	330	0.9012		

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
N>>NIL_86_85_S	71.6	48,249.4	Generation contributing to flow from Armidale to Tamworth 330 kV on trip of Uralla-Tamworth 330 kV line			
N>>NIL_85_86_S	38.1	32,859.8	Generation contributing to flow from Uralla to Tamworth 330 kV on trip of the Armidale-Tamworth 330 kV line			
N>>NIL_86_8U_S	24.7	12,328.7	Generation contributing to flow from Armidale to Tamworth 330 kV on trip of the Armidale-Uralla 330 kV line			

VRE semi-scheduled curtailment – calendar year 2023						
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
METZSF1	Metz Solar Farm	115	0.1	0.0	292	
NEWENSF1	New England Solar Farm	200	4.1	1.2	10,401	
NEWENSF2	New England Solar Farm – Stage 2	200	4.2	1.7	14,947	
SAPHWF1	Sapphire Wind Farm	270	0.0	0.0	38	
WRSF1	White Rock Solar Farm	20	0.2	0.0	62	
WRWF1	White Rock Wind Farm	172	0.8	0.4	3,612	

⁶ New England REZ solar outlook exceeds the expected renewable solar potential based on the geographical size and resource quality. The modelling allows for additional solar above this solar resource limit, but the additional solar capacity incurs a land use penalty factor of \$0.29 million/MW. Even with this penalty applied, the ISP model still projects additional solar capacity in *Step Change* by 2049-50.

VRE curtailment – ISP forecast						
Scenario	2025		2026		2027	
	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	1%	6%	10%	17%	8%	20%

⁷ Part 1 and Part 2 in service timings advised by proponent are June 2031 and June 2033, respectively. Under the Draft 2024 ISP *Step Change* scenario, the project is modelled with a timing of July 2028.

A3.4 N3 – Central West Orana

REZ information

Overview

Central-West Orana REZ has been identified by the New South Wales Government as the state's first pilot REZ⁸. The Central-West Orana REZ was declared on 5 November 2021 under the *NSW Electricity Infrastructure Investment Act 2020* (the Act) with a minimum of 3,000 MW of additional transmission network capacity within the Central West New South Wales region of the state. REZ design and community engagement is currently progressing, and the initial addition of transmission network capacity is now planned to be 4,500 MW. The Central-West Orana REZ Access Scheme was declared under the Act on 23 December 2022.

Network Transfer Capability

The existing network transfer capacity is 900 MW. This is set to increase with several network augmentations.

The Central West Orana Transmission Link will increase the network transfer capability 3000 MW for generators which connect to the 330/500kV network

The Hunter Transmission Project 1.0 (Central New South Wales (CNSW) to Sydney Newcastle Wollongong (SNW) Option 1) is required to address network constraints between CNSW and SNW to further increase the network transfer capability by 1,500 MW for a total network transfer capability of 5,400 MW for the Central-West Orana REZ.

Jurisdictional body	Reference	Function
EnergyCo	NSW Electricity Infrastructure Investment Act 2020 ⁹	The Central-West Orana REZ was formally declared in November 2021 <i>under the Electricity Infrastructure Investment Act 2020</i> ⁹ . EnergyCo was appointed as the Infrastructure Planner for the Central-West Orana REZ ⁸ .

⁸ EnergyCo, Central-West Orana Renewable Energy Zone, at <u>https://www.energyco.nsw.gov.au/cwo-rez</u>.

⁹ See https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23.

EnergyCo	Network Infrastructure Strategy ¹⁰	EnergyCo's strategy to coordinate NSW network infrastructure to connect new generation and storage in New South Wales' five REZs.
AEMO Services	Long Term Energy Service Agreement (LTESA) Tenders ¹¹	AEMO Services (appointed as Consumer Trustee) conducts tenders for projects generation, storage, firming infrastructure that can be recovered from consumers, in accordance with the Infrastructure Investment Objectives (IIO) Report.

Generation Hosting capacity or access rights

New South Wales uses aggregate maximum capacity to indicate the amount of renewable generation they are targeting to connect in CWO. The initial aggregate maximum capacity for Central-West Orana REZ is 5.84 GW based on a curtailment of 4.37%¹². This has not been broken down by technology, and is for the whole REZ not individual connection points. This assumes the Central-West Orana Option 1¹³ is in service.

Resource metrics					
Resource	Solar	Wi	nd		
Resource Quality	С	(0		
Renewable Potential (MW)	6,850	3,0	00 ¹⁴		
Climate hazard					
Temperature score	С	Bushfire score	E		

Marginal loss factors

Marginal Loss Factor				
Technology	Voltage (kV)	2024-25 MLF		
Solar	66	0.8969 - 0.9616		
	132	0.9096 - 0.9835		
Wind	132	0.9518 - 1.0205		

Congestion information – calendar year 2023				
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation	
N>NIL_94T	1,703.3	23,990,532.1	Generation contributing to flow from Molong to Orange North 132 kV	
N>NIL_94K_1	1,253.6	12,452,679.3	Generation contributing to flow from Suntop to Wellington 132 kV	
N>NIL_94T_947	26.2	204,223.1	Generation contributing to flow from Molong to Orange North 132 kV on trip of the Wellington-Orange North 132 kV line	

¹⁰ See <u>https://www.energyco.nsw.gov.au/industry/network-infrastructure-strategy-nsw.</u>

¹¹ AEMO Services Tenders, <u>https://aemoservices.com.au/tenders</u>.

¹² See <u>https://www.energy.nsw.gov.au/sites/default/files/2022-08/cwo-rez-access-rights-and-scheme-design-positions-paper-220336.pdf</u>.

¹³ New 500 kV and 330 kV transmission lines from the existing network at Wollar to Merotherrie, with extensions to Elong Elong and Uarbry to enable the delivery of 4,500 MW of additional network capacity. See 2023 IIO, at <u>https://aemoservices.com.au/-/media/services/files/</u> <u>publications/iio-report/2023/2023-iio-report-december_final.pdf?la=en</u>.

¹⁴ Central-West Orana REZ wind outlook exceeds the expected renewable wind potential based on the geographical size and resource quality. The modelling allows for additional wind above this wind resource limit, but the additional wind capacity incurs a land use penalty factor of \$0.29 million/MW. Even with this penalty applied, the ISP model still projects almost double this renewable wind potential in all scenarios by 2029-30.

VRE semi-scheduled curtailment – calendar year 2023						
DUID	Generato	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BERYLSF1	Beryl Sol	ar Farm	87	0.2	0.1	494
BODWF1	Bodangora	Wind Farm	111	0.1	0.0	199
FLYCRKWF	Flyers Creek	Wind Farm	140	0.9	0.0	54
GOONSF1	Goonumbla	Solar Farm	69	16.3	3.0	26,087
MANSLR1	Manildra S	olar Farm	46	39.4	4.5	39,600
MOLNGSF1	Molong Solar Farm		30	50.7	4.4	38,863
NEVERSF1	Nevertire Solar Farm		105	0.7	0.2	1,736
NYNGAN1	Nyngan Solar Plant		102	0.3	0.1	626
SUNTPSF1	Suntop Solar Farm		150	7.8	3.2	27,936
WELLSF1	Wellington S	Solar Farm	170	0.3	0.2	1,404
VRE curtailmen	VRE curtailment – ISP forecast					
	2025		20	026	202	7
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	8%	14%	10%	14%	11%	18%

ISP forecast

Transmission access expansion for Step Change

¹⁵ Under the Draft 2024 ISP Step Change scenario, Central West Orana Transmission Link and Hunter Transmission Project are modelled in 2027-28.

A3.5 N4 – Broken Hill

REZ information

¹⁶ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at <u>https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.</u>

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics				
Resource	Solar	Wi	nd	
Resource Quality	A	[)	
Renewable Potential (MW)	8,000	5,100		
Climate hazard				
Temperature score	E	Bushfire score	С	

Marginal loss factors

Marginal Loss Factor			
Technology	Voltage (kV)	2024-25 MLF	
Solar	22	0.7784	
Wind	220	0.8050	

Congestion information – calendar year 2023			
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
-	-	-	-

VRE semi-scheduled curtailment – calendar year 2023						
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BROKENH1	Broken Hill Solar Plant		53	8.3	1.1	9,681
STWF1	Silverton Wind Farm		198	2.0	1.4	12,102
VRE curtailmen	t – ISP forecast					
	2025		20	026	20	27
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	-	3%	-	2%	1%	10%

A3.6 N5 – South West New South Wales

REZ information

¹⁷ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at <u>https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en</u>.

¹⁸ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

¹⁹ See https://www.energyco.nsw.gov.au/industry/network-infrastructure-strategy-nsw.

AEMO Services

Long Term Energy Service Agreement (LTESA) Tenders ²⁰	AEMO Services (appointed as Consumer Trustee) conducts tenders for projects generation, storage, firming infrastructure that can be recovered from consumers, in accordance with the Infrastructure Investment Objectives (IIO) Report.

Generation Hosting capacity or access rights

New South Wales uses aggregate maximum capacity to indicate the amount of renewable generation the state is targeting to connect in SWNSW REZ. There are two aggregate maximum capacities provided, one for the entire REZ, and one for the Buronga network elements, which are part of the SWNSW REZ.

The initial aggregate maximum capacity for SWNSW REZ is 3,980 MW based on a curtailment of 3.86%²¹. Note at the time of publication this is a draft number and subject to change. This has not been broken down by technology. This assumes the Project Energy Connect and HumeLink are in service.

The Buronga network elements²² have an individual initial aggregate maximum capacity cap of 1,270 MW based on a curtailment of 3.86%23.

Resource metrics			
Resource	Solar	Wi	nd
Resource Quality	С	E	E
Renewable Potential (MW)	2,256	3,9	000
Climate hazard			
Temperature score	E	Bushfire score	D

Marginal loss factors

Marginal Loss Factor				
Technology	Voltage (kV)	2024-25 MLF		
Solar	22	0.7793		
	132	0.8367 - 0.8979		
	220	0.7774		

Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
N^^N_NIL_X5_xxx	1,041.3	7,527,221.4	Generation contributing to flow from Balranald to Darlington Point 220 kV on trip of the Bendigo-Shepparton or Bendigo-Kerang 220 kV lines		
V>>NIL_WBBA_RCBSS	27.7	200,185.0	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Red Cliffs-Buronga 220 kV line		
V^^SML_NSWRB_2	17.3	54,310.2	Generation in North West Victoria		

²⁰ AEMO Services Tenders, at <u>https://aemoservices.com.au/tenders</u>.

²¹ SW REZ Access Scheme Declaration, see section 8 and section 9, at https://www.energy.nsw.gov.au/sites/default/files/2023-12/Draft Renewable Energy Zone South West Access Scheme Order 2023 HSF Draft 071223.pdf.

²² This includes the network elements from the Buronga substation to the Dinawan substation, but excluding the Dinawan substation. See Dictionary section of SW REZ Access Scheme Declaration.

²³ SW REZ Access Scheme Declaration, see section 8 and section 9.

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
CRWASF1	Corowa So	olar Farm	30	5.9	0.5	3,948		
LIMOSF11	Limondale Solar Farm 1		220	13.2	7.7	67,418		
LIMOSF21	Limondale Solar Farm 2		29	11.0	0.9	7,477		
SUNRSF1	Sunraysia Solar Farm		200	12.5	6.8	59,214		
VRE curtailment – ISP forecast								
	20	25	2	026	2027			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	3% ²⁴	33%	1%	30%	-	22%		

ISP forecast

ISP forecas	st												
				Solar PV	(MW)			Wind (MW)					
VRE	E	kisting/			Projecte	d		Existing/		l	Projected	l	
outiook	ant	icipated	2025	2026	2027	2028	2029	anticipated	2025	2026	2027	2028	2029
Step Change		1,121	-	-	650	650	650	-	-	-	-	-	-
Transmissi	on acce	ess expan	sion for S	Step Char	nge								
	2,000 -												_
	1,800 -							•					_
	1,600 -						-						_
MW)	1,400 -												_
city	1,200 -						_				_		_
Capa	1,000 -						1						_
lled (800 -												_
nsta	600 -												_
_	400 -				1								_
	200 -												_
	0 -	202	4-25		2025-26		2026-27	7	2027-28		2028-	29	_
			Existing	Solar		E	Existing Wind	b		ISP solar f	forecast		
			ISP wind	forecast		—— E	Existing trans	smission		Transmiss	ion foreca	st	

Committed, Anticipated, and Actionable Transmission Projects	Timing ²⁵	Status	Increase in network transfer capability
Project EnergyConnect – Stage 2	May 2026	Committed	800 MW
HumeLink	July 2026 ²⁶	Actionable ISP	800 MW
VNI West	December 2028	Actionable ISP	900 MW

²⁴ Forecast VRE curtailment for N5 doesn't include the existing 132 kV network generators.

²⁵ Under the Draft 2024 ISP Step Change scenario, Project EnergyConnect – Stage 2 is modelled in July 2026, HumeLink in July 2029, and VNI West in July 2029.

²⁶ Northern and southern circuits in service timings advised by proponent are July 2026 and December 2026, respectively.

A3.7 N6 – Wagga Wagga

REZ information

The Wagga Wagga REZ's jurisdictional planning body is Transgrid. It is not presently declared under the *Electricity Infrastructure Investment Act*.

²⁷ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at <u>https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en</u>.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics							
Resource	Solar	Wind					
Resource Quality	С	E					
Renewable Potential (MW)	1,028	1,000					
Climate hazard							
Temperature score	D	Bushfire score	D				

Marginal loss factors

Marginal Loss Factor						
Technology	Voltage (kV)	2024-25 MLF				
Color	66	0.8720				
Solar	132	0.8446 - 0.8752				

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
N>>NIL_9XX_051	914.2	12,652,924.1	Generation contributing to flow from Burrinjuck to Yass 132 kV, Wagga to Yass 132 kV or Wagga North to Murrumburrah 132 kV on trip of the Wagga-Lower Tumut 330 kV line			
N>NIL_9R6_9R5	605.3	5,386,845.1	Generation contributing to flow from Wagga North to Wagga 132 kV on trip of the Wagga North-Wagga 330 kV line			
N>NIL_997_99A	517.1	4,496,412.3	Generation contributing to flow from Corowa to Albury 132 kV on trip of the Finley-Uranquinty 132 kV line			
N>NIL_9R6_991	438.6	4,338,900.6	Generation contributing to flow from Wagga North to Wagga 132 kV on trip of the Wagga North-Murrumburrah 132 kV line			
N::N_NIL_63	95.4	730,216.3	Generation contributing to flow from Darlington Point to Wagga Wagga 330 kV			
N>N-NIL_JUTX_LV	77.2	446,880.0	Generation exporting from 66 kV through the 132/66 kV Junee transformer			
N>NIL_9R4_99A	50.4	173,462.9	Generation contributing to flow from Finley to Mulwala 132 kV on trip of Finley-Uranquinty 132 kV line			
N>NIL_997/2_99A	32.1	103,509.7	Generation contributing to flow from Mulwala to Corowa 132 kV on trip of the Finley-Uranquinty 132 kV line			
N>NIL_99U	31.3	251,869.8	Generation contributing to flow from Sebastopol to Wagga North 132 kV			
N>NIL_99F	15.3	76,017.4	Generation contributing flow from Narrandera to Uranquinty 132 kV			

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
AVLSF1	Avonlie Sc	olar Farm	190	2.7	0.9	5,736		
BOMENSF1	Bomen Solar Farm		100	10.2	2.4	20,831		
JUNEESF1	Junee Solar Farm		30	9.0	0.7	6,206		
SEBSF1	Sebastopol Solar Farm		90	11.1	2.7	23,856		
WAGGNSF1	Wagga North Solar Farm		48	10.7	1.0	8,484		
VRE curtailment – ISP forecast								
	20	25	20)26	2027			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	-	1%	-	-	-	6%		

²⁸ Northern and southern circuits in service timings advised by proponent are July 2026 and December 2026, respectively. Under the Draft 2024 ISP Step Change scenario, the project is modelled with a timing of July 2029.

A3.8 N7 – Tumut

REZ information

²⁹ Transgrid, HumeLink project, at <u>https://www.transgrid.com.au/HumeLink</u>.

Climate hazard			
Temperature score	С	Bushfire score	E

Marginal loss factors

Marginal Loss Factor						
Technology	Voltage (kV)	2024-25 MLF				
-	-	-				

Congestion and curtailment

Congestion information – calendar year 2023						
Constraint ID	Binding Marginal hours value (\$) Most aff		Most affected generation			
N>>NIL_9XX_051	914.2	12,652,924.1	Generation contributing to flow from Burrinjuck to Yass 132 kV on trip of the Wagga-Lower Tumut 330 kV line			
V>>N_NIL_65_66	37.6	18,106.7	Generation contributing to flow from Murray to Upper Tumut 330 kV on trip of Murray-Lower Tumut 330 kV			

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
-	-		-	-	-	-		
VRE curtailment – ISP forecast								
Scenario	20	25	20)26	2027			
	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	-	-	-	-	-	-		

ISP forecast												
Solar PV (MW)				Wind (MW)								
VRE outlook	Existing/ Projected		d Exi		Existing/		Projected					
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	Transmission access expansion for Step Change											
There is no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.												
Committed, Anticipated, and Actionable Transmission Projects		Timing		Status			Increase in network transfer capability					
HumeLink					July 202	26 ³⁰	Actionable ISP			2,200 MW ³¹		

³⁰ Northern and southern circuits in service timings advised by proponent are July 2026 and December 2026, respectively. Under the Draft 2024 ISP Step Change scenario, the project is modelled with a timing of July 2029.

³¹ Total REZ network limit increase in N6 and N7 combined.

A3.9 N8 – Cooma-Monaro

REZ information

Marginal loss factors

Marginal Loss Factor				
Technology	Voltage (kV)	2024-25 MLF		
Wind	132	0.9344		

³² See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at <u>https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en</u>.

Congestion and curtailment

Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
-	-	-	-		

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BOCORWF1	Boco Rock Wind Farm		Boco Rock Wind Farm		113	0.3	0.1	812
VRE curtailment – ISP forecast								
	2025		2026		2027			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	-	1%	-	-	1%	8%		

A3.10N9 – Hunter-Central Coast

REZ information

³³ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

EnergyCo	Network Infrastructure Strategy ³⁴	EnergyCo's strategy to coordinate New South Wales network infrastructure to connect new generation and storage in New South Wales' five REZs.
AEMO Services	Long Term Energy Service Agreement (LTESA) Tenders ³⁵	AEMO Services (appointed as Consumer Trustee) conducts tenders for projects generation, storage, firming infrastructure that can be recovered from consumers, in accordance with the Infrastructure Investment Objectives (IIO) Report.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics				
Resource	Solar	Wi	nd	
Resource Quality	D	[)	
Renewable Potential (MW)	516	1,400		
Climate hazard				
Temperature score	A	Bushfire score	E	

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2024-25 MLF			
-	-	-			

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
-	-	-	-			

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
-	-		-		-	-	-	-
VRE curtailment – ISP forecast								
	2025		2026		2027			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	-	-	-	-	5%	10%		

³⁴ See <u>https://www.energyco.nsw.gov.au/industry/network-infrastructure-strategy-nsw.</u>

³⁵ AEMO Services Tenders, at <u>https://aemoservices.com.au/tenders</u>.

³⁶ See Section 2.4.6 of the ISP Methodology, at <u>https://www.aemo.com.au/-/media/files/stakeholder_consultation/consultations/nem-consultations/2023/isp-methodology-2023/isp-methodology_june-2023.pdf?la=en.</u>

A3.11 N10 – Hunter Coast

REZ information

³⁷ Federal Government, Hunter offshore wind zone declaration, at <u>https://www.dcceew.gov.au/energy/renewable/offshore-wind/areas/hunter#:~:text=on%20Wind%20Turbines-,Area%20in%20the%20Pacific%20Ocean%20off%20%E2%80%8Cthe%20Hunter%20 %E2%80%8Cdeclared%20suitable,development%20on%2012%20July%202023.</u>

Resource metrics				
Resource	Offshore Wind (fixed)	Offshore Wi	nd (floating)	
Resource Quality	E	E	3	
Renewable Potential (MW)	-	7,420		
Climate hazard				
Temperature score	A	Bushfire score	E	

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2024-25 MLF			
-	-	-			

Congestion and curtailment

Congestion information – calendar year 2023					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
-	-	-	-		

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
-	-				-	-		
VRE curtailmen	t – ISP forecast							
	20	25	20)26	20	27		
Scenario	Curtailment	Economic offloading	Curtailment Economic offloading		Curtailment	Economic offloading		
Step Change	-	-	-	-	-	-		

ISP forecast												
		ę	Solar PV (MW)	Wind (MW)							
VRE outlook	E outlook Existing/		Projected				Existing/		Projected			
	committed/ anticipated	2025	5 2026 2027 2028 2029 committee anticipate	committed/ anticipated	2025	2026	2027	2028	2029			
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for S	tep Chan	ge								
There are no ex addiitonal VRE	xisting, committ for this REZ. Th	ed, antici erefore, r	pated VRE no VRE cu	E projects rtailment	for this R or transm	EZ and the ission exp	e modelling out ansion occurs i	comes for n this RE	r all scena Z.	rios did n	ot project	any
Committed, Au Transmission	nticipated, and Projects	Actional	ble		Timing		Status Increase in network transfer capability			ork ty		
-					-		-			-		

A3.12N11 – Illawarra Coast

REZ information

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

³⁸ See https://www.dcceew.gov.au/energy/renewable/offshore-wind/areas/illawarra.

Resource metrics							
Resource	Offshore Wind (fixed)	Offshore Wind (floating)					
Resource Quality	В	E	3				
Renewable Potential (MW)	148	5,696					
Climate hazard							
Temperature score	С	Bushfire score	С				

Marginal loss factors

Marginal Loss Factor							
Technology	Voltage (kV)	2024-25 MLF					
-	-	-					

Congestion and curtailment

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
-	-	-	-			

VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name		Maximum Capacity (MW)	Maximum Average Capacity (MW) curtailment (%)		Curtailment (MWh)		
-	-		-			-		
VRE curtailmen	VRE curtailment – ISP forecast							
	20	25	20)26	2027			
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading		
Step Change	-	-	-	-	-	-		

ISP forecast												
	Solar PV (MW)					Wind (MW)						
VRE outlook	Existing/		Projected		Existing/	Projected						
	anticipated	2025	2026	2027	2028	2029	anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for S	tep Chan	ge								
There are no e addiitonal VRE	xisting, committ for this REZ. Th	ed, antici herefore, r	pated VRI no VRE cu	E projects Irtailment	for this R or transm	EZ and th ission exp	e modelling out bansion occurs i	comes for	r all scena Z.	irios did n	ot project	any
Committed, An Transmission	nticipated, and Projects	Actiona	ble		Timing		Status			Increas transfe	e in netw r capabili	ork ty
-					-		-			-		

A3.13N12 – Illawarra

REZ information

³⁹ See https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23.

- ⁴⁰ See <u>https://www.energyco.nsw.gov.au/industry/network-infrastructure-strategy-nsw.</u>
- ⁴¹ AEMO Services Tenders, at <u>https://aemoservices.com.au/tenders</u>.

Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics							
Resource	Solar		Wind				
Resource Quality	F		E				
Renewable Potential (MW)	-		-				
Climate hazard							
Temperature score	-	Bushfire score	-				

Marginal loss factors

Marginal Loss Factor							
Technology	Voltage (kV)	2024-25 MLF					
-	-	-					

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
-	-	-	-			

VRE semi-scheduled curtailment – calendar year 2023												
DUID	Ge	enerator	name		Maximum Capacity (MW)		Average curtailment (%)		Average curtailment (MW)		Curtailment (MWh)	
-		-			-		-		-		-	
VRE curtailment – ISP forecast												
	2025				2026				2027			
Scenario	Curtailment Economic offloading		Curta	ilment	Economic offloading	c g	Curtailn	nent	Econo offloa	omic ding		
Step Change			-		-		-		-			
ISP forecast	ISP forecast											
			Solar PV	(MW)		Wind (MW)						
VRE outlook	Existing/			Projecte	d		Existing/			Projecte	d	
	committed/ anticipated	2025	2026	2027	0000		committed/ anticipated					
				2021	2028	2029	anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	anticipated	-	-	-	-	-
Step Change Transmission	- access expans	- sion for \$	- Step Chan	- ge	-	-	anticipated	-	-	-	-	-
Step Change Transmission a There are no ex addiitonal VRE	- access expans kisting, committ for this REZ. Th	- sion for \$ ted, antic herefore,	- Step Chan Sipated VRI no VRE cu	ge E projecta	- s for this R	2029 - EZ and the	anticipated - e modelling out ansion occurs i	2025 - comes fo n this RE	- or all scena Z.	2027 - arios did	2028 - not project	2029 - any
Step Change Transmission a There are no ex addiitonal VRE Committed, An Transmission	- access expans kisting, commiti for this REZ. Th nticipated, and Projects	- ted, antic herefore, I Actiona	- Step Chan sipated VRI no VRE cu able	<i>ge</i> E projecta	s for this R t or transm	2029 - EZ and the ission exp	anticipated - e modelling outo pansion occurs i Status	2025 - comes fo n this RE	or all scena	2027 - arios did Increa transfe	2028 - not project se in netw er capabili	2029 - any ork ty

A3.14 Non-REZ

Congestion information –	calendar y	ear 2023	
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
N>>NIL_964_84_S	807.2	774,024.1	Generation contributing to flow from Port Macquarie to Herron Creek 132 kV on trip of the Tamworth-Liddell 330 kV line
N>NIL_PKTX_LV	612.8	2,775,237.5	Generation exporting from 66 kV through the 132/66 kV Parkes transformers
V^^N_NIL_1	585.0	435,325.3	Generation in South-West NSW, North-West VIC and North-East VIC
N>NIL_LSDU	151.3	126,566.5	Generation contributing to flow from Lismore to Dunoon 132 kV on trip of the parallel line
N>NIL_MBDU	108.6	36,654.5	Generation contributing to flow from Mullumbimby to Dunoon 132 kV on trip of a parallel line
N>NIL_9ML	77.7	756,776.9	Generation contributing to flow from Crudine Ridge to Ilford Tee 132 kV
N>>NIL_33_34	75.4	324,979.9	Generation contributing to flow from Bayswater to Liddell 330 kV on loss of parallel Bayswater-Liddell 330 kV line
N>>NIL_84_88_S	74.9	48,258.5	Generation contributing to flow from Tamworth to Liddell 330 kV on trip of Tamworth-Muswellbrook 330 kV line
N^^V_NIL_1	65.5	49,574.6	NSW generation, via limitation of NSW to VIC transfer
N>Q-NIL_757_758	54.7	16,189.9	Generation contributing to northward flow on the Terranora - Mudgeeraba 110 kV lines
N>NIL_901	53.3	291,034.5	Generation contributing to flow from West Wyalong to Temora 132 kV
N^^V_NIL_ARWBBA	38.0	13,576.1	Generation in North West VIC
N>NIL_COTX_LV	30.5	125,153.7	Generation exporting from 22 kV through the 22/132 kV Corowa transformers
N>>NIL_88_84_S	25.9	18,228.5	Generation contributing to flow from Tamworth to Muswellbrook 330 kV on trip of the Tamworth-Liddell 330 kV line
N>>NIL_998	22.7	681,432.5	Generation contributing to flow from Cowra to Forbes 132 kV
N>NIL_9GL	16.6	159,934.1	Generation contributing to flow from Bango 973 to Yass 132 kV
N>NIL_9GM	14.3	98,687.7	Generation contributing to flow from Bango 999 to Yass 132 kV
N>NIL_999	10.8	566,130.0	Generation contributing to flow from Bango 999 to Cowra 132 kV
N>>NIL_84_83_OPEN	9.3	63,221.3	Generation contributing to flow from Liddell to Tamworth 330 kV on trip of the Liddell-Muswellbrook 330 kV line
N>>NIL_4	7.6	86,989.4	Generation contributing to flow from Collector to Marulan 330 kV
N>>NIL_5_61_N	4.6	70,751.6	Generation contributing to flow from Yass to Marulan 330 kV on trip of the Crookwell-Bannaby 330 kV line

VRE semi-scheduled curtailment – calendar year 2023					
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BANGOWF1	Bango 973 Wind Far0m	155	2.2	0.8	6,721
BANGOWF2	Bango 999 Wind Farm	83	2.6	0.7	5,998
COLEASF1	Coleambally Solar Farm	150	2.1	0.8	7,025
COLWF01	Collector Wind Farm 1	219	0.5	0.3	2,433
CROOKWF2	Crookwell 2 Wind Farm	91	0.5	0.2	1,390
CRURWF1	Crudine Ridge Wind Farm	138	0.5	0.2	1,807
DARLSF1	Darlington Point Solar Farm	275	4.0	2.7	23,801
FINLYSF1	Finley Solar Farm	133	5.4	1.8	15,334
GULLRSF1	Gullen Range Solar Farm	10	0.3	0.0	61
GULLRWF1	Gullen Range Wind Farm	161	0.4	0.2	1,888
GULLRWF2	Gullen Range Wind Farm 2	107	0.7	0.3	2,256
GUNNING1	Gunning Wind Farm	47	0.9	0.2	1,373
HILLSTN1	Hillston Sun Farm	85	1.4	0.4	3,159
JEMALNG1	Jemalong Solar Project	50	3.1	0.4	3,842
PARSF1	Parkes Solar Farm	51	13.8	2.0	17,513
RYEPARK1	Rye Park Renewable Energy	384	0.5	0.1	386
TARALGA1	Taralga Wind Farm	106	0.1	0.0	185
WOODLWN1	Woodlawn Wind Farm	48	0.1	0.0	168
WSTWYSF1	West Wyalong Solar Farm	90	8.8	1.8	15,456
WYASF1	Wyalong Solar Farm	53	26.1	2.2	10,870