

Appendix A3. New South Wales

July 2025

Appendix to the 2025 Enhanced Locational Information Report

We acknowledge the Traditional Custodians of the land, seas and waters across Australia. We honour the wisdom of Aboriginal and Torres Strait Islander Elders past and present and embrace future generations.

We acknowledge that, wherever we work, we do so on Aboriginal and Torres Strait Islander lands. We pay respect to the world's oldest continuing culture and First Nations peoples' deep and continuing connection to Country; and hope that our work can benefit both people and Country.

'Journey of unity: AEMO's Reconciliation Path' by Lani Balzan

AEMO Group is proud to have launched its first <u>Reconciliation Action Plan</u> in May 2024. 'Journey of unity: AEMO's Reconciliation Path' was created by Wiradjuri artist Lani Balzan to visually narrate our ongoing journey towards reconciliation - a collaborative endeavour that honours First Nations cultures, fosters mutual understanding, and paves the way for a brighter, more inclusive future.

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 1 April 2025, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2025 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

Version	Release date	Changes
1.0	09/07/2025	Initial release.

Contents

A3.1	Introduction	5
A3.2	Average forecast daily usable battery stage of charge	6
A3.3	Projected generation build	7
A3.4	REZs Overview	13
A3.5	N1 – Northwest New South Wales	14
A3.6	N2 – New England	17
A3.7	N3 – Central West Orana	21
A3.8	N4 – Broken Hill	25
A3.9	N5 – South West New South Wales	28
A3.10	N6 – Wagga Wagga	32
A3.11	N7 – Tumut	36
A3.12	N8 – Cooma-Monaro	39
A3.13	N9 – Hunter-Central Coast	42
A3.14	N10 – Hunter Coast	46
A3.15	N11 – Illawarra Coast	49
A3.16	N12 – Illawarra	52
A3.17	Non-REZ	55

Figures

Figure 1	Average forecast daily usable state of charge (SoC) for batteries across New South Wales, 2024 ISP Step Change scenario, 2030 (%)	6
Figure 2	Projected generation capacity (MW) and across New South Wales, under the 2024 ISP <i>Step Change</i> projected build, 2025	7
Figure 3	Projected generation capacity (MW) and across New South Wales, under the 2024 ISP <i>Step Change</i> projected build, 2030	8
Figure 4	Projected generation capacity (MW) and across New South Wales, under the 2024 ISP <i>Step Change</i> projected build, 2040	9
Figure 5	Annual generation energy production (MWh) across New South Wales, 2024	10
Figure 6	Projected annual generation energy production (MWh) across New South Wales, under the 2024 ISP <i>Step Change</i> projected build, 2030	11

Figure 7	Projected annual generation energy production (MWh) across New South Wales, under the 2024 ISP <i>Step Change</i> projected build, 2040	12
Figure 8	Overview of New South Wales region and REZs	13

A3.1 Introduction

This appendix provides detailed locational indicators and metrics for New South Wales. This appendix contains the following information:

- The average forecast daily usable stage of charge (SoC) for batteries (planted under the 2024 ISP *Step Change* scenario) across New South Wales in 2030 (Section A3.2).
- The generation and storage capacity and annual generation energy production across New South Wales under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040 (Section A3.3).
- An overview map of the New South Wales region and associated REZs (Section A3.1).
- Detailed locational indicators and metrics for each REZ within New South Wales (Section A3.5 to A3.17).

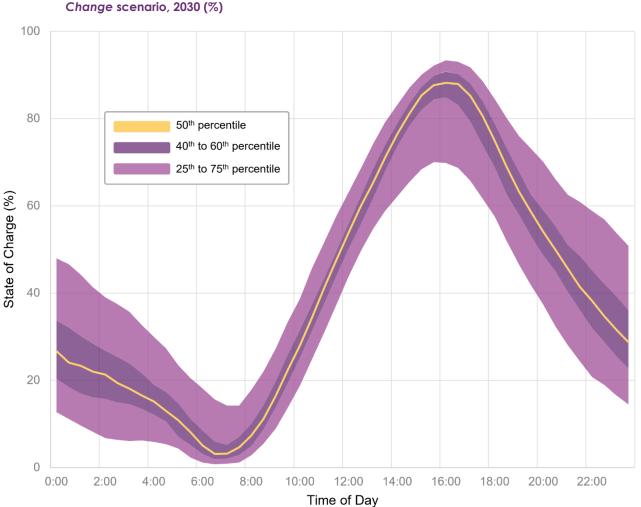
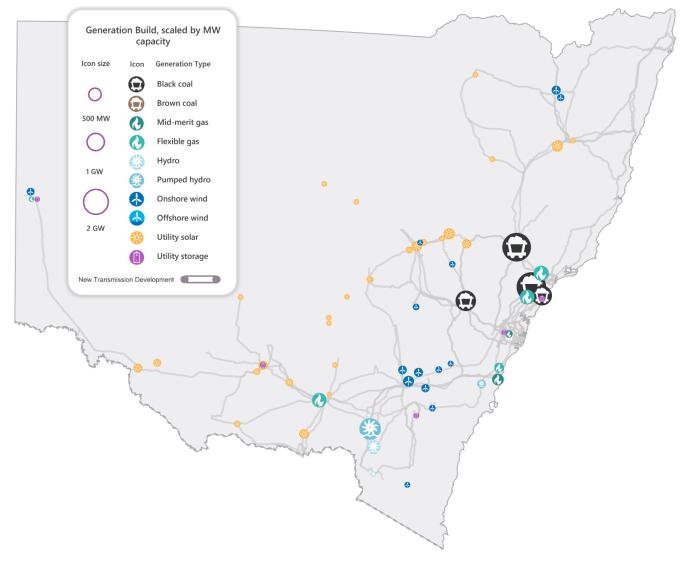

This appendix uses existing sources of publicly available information which includes the Final 2024 ISP.

Figure 1

Average forecast daily usable battery stage of charge A3.2

Figure 1 presents the average forecast daily usable SoC for batteries (planted under the Step Change scenario) across New South Wales in 2030.


Average forecast daily usable state of charge (SoC) for batteries across New South Wales, 2024 ISP Step

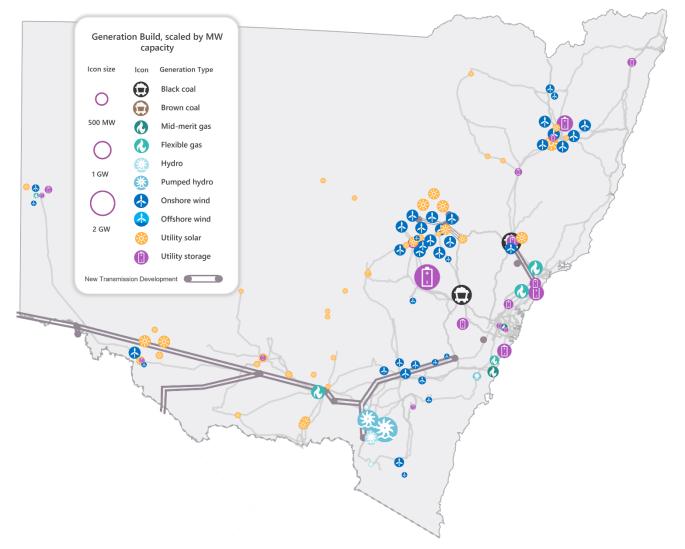
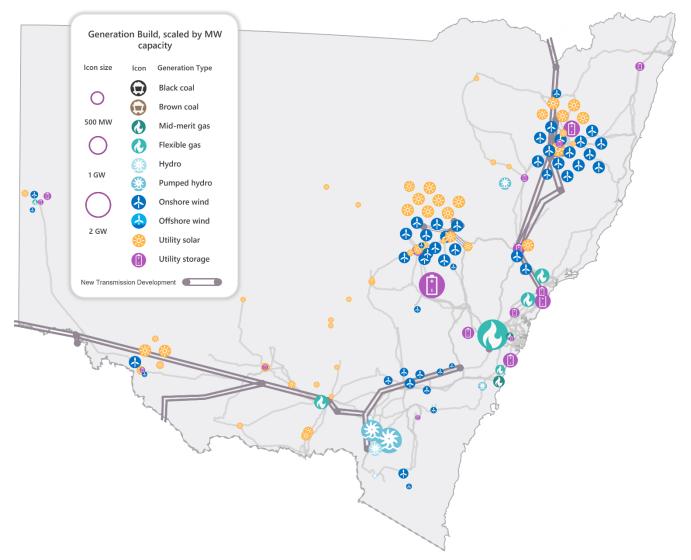

A3.3 Projected generation build

Figure 2 to Figure 7 show the generation and storage capacity and annual generation energy production across New South Wales under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040¹.



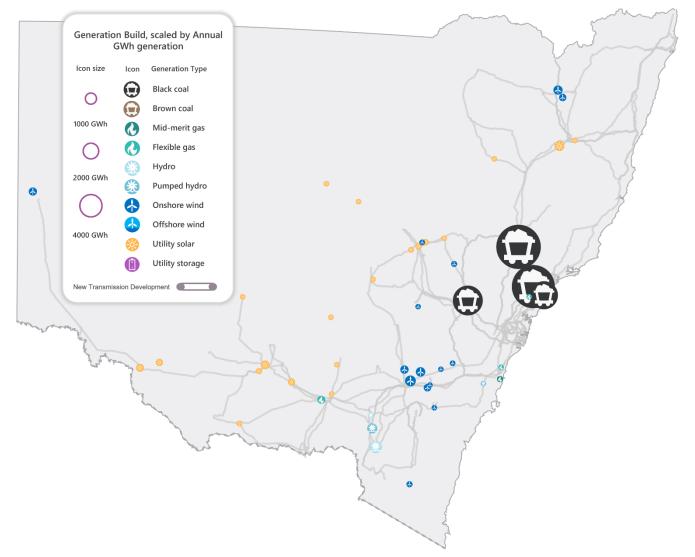

¹ Units smaller than 50 MW have been omitted from the capacity map, and those smaller than 125 GWh annually have been omitted from the energy production maps. Icon sizes do not represent area of land usage. Icon locations have been arranged for visual clarity. ISP projects have been placed within their relevant ISP sub-region or REZ but do not represent specific anticipated connection points.

Figure 3 Projected generation capacity (MW) and across New South Wales, under the 2024 ISP Step Change projected build, 2030

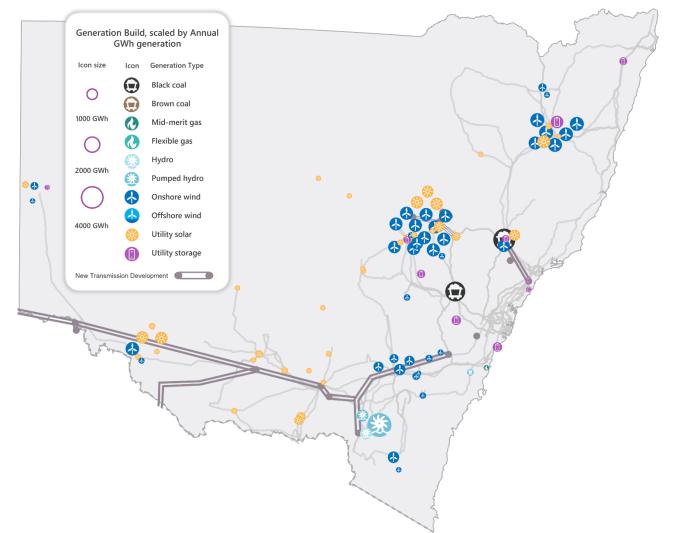
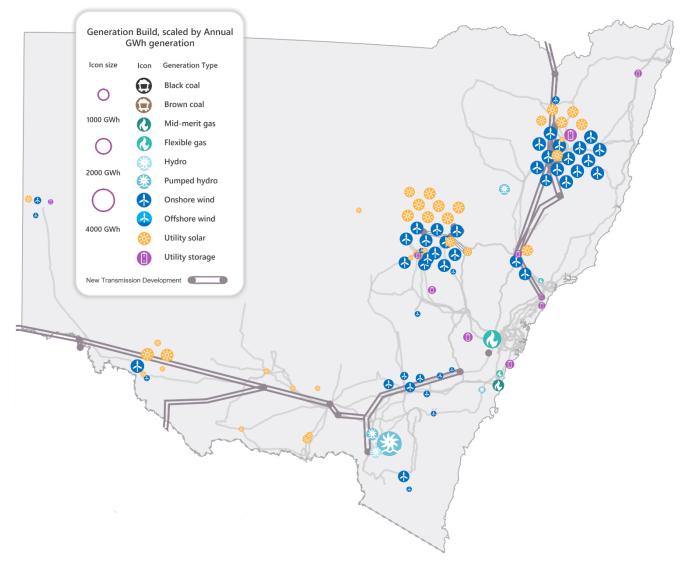
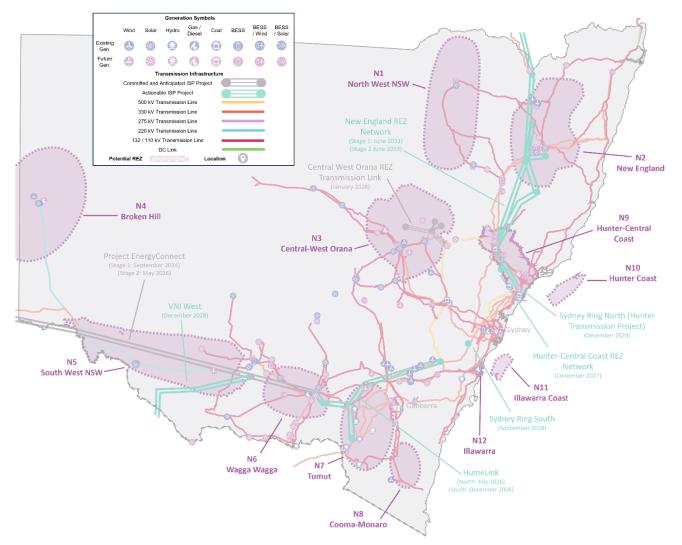


Figure 4 Projected generation capacity (MW) and across New South Wales, under the 2024 ISP Step Change projected build, 2040


Figure 5 Annual generation energy production (MWh) across New South Wales, 2024

Note: This figure makes use of historical calendar year generation data and is hence presented for the year 2024. All other build figures make use of the 2024 *ISP Step Change* projected build.


Figure 6 Projected annual generation energy production (MWh) across New South Wales, under the 2024 ISP Step Change projected build, 2030

A3.4 **REZs overview**

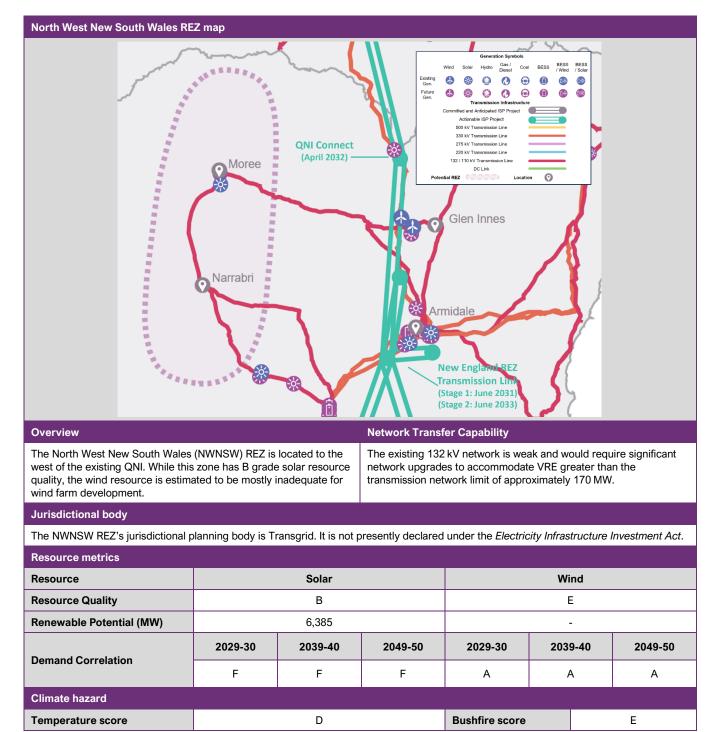

The following sections of this appendix provides detailed locational indicators and metrics for each REZ in New South Wales. **Figure 8** provides an overview map of the New South Wales region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout the remainder of this appendix.

Figure 8 Overview of New South Wales region and REZs

A3.5 N1 – Northwest New South Wales

REZ information

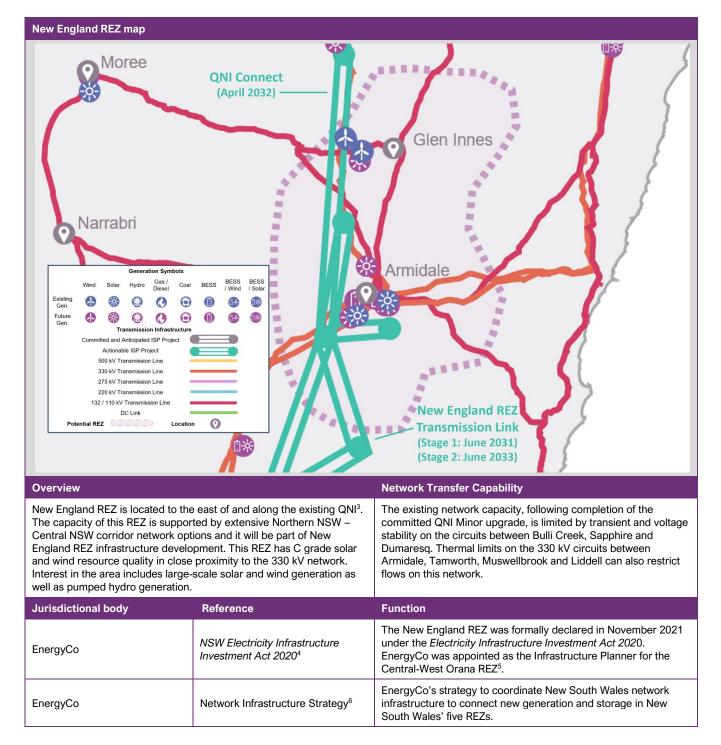
Marginal loss factors

Marginal Loss Factor		
Technology	Voltage (kV)	2025-26 MLF

N1 – North West New South Wales

Marginal Loss Factor							
Solar	66	66 0.8387					
	132	0.8437					
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness						
MLF Robustness score	2029-30	2034-35	2039-40				
MLF Robustness score	F	F	F				

Congestion information – calendar year 2024							
Constraint ID Binding hours Marginal value (\$) Most affected generation							
N>NIL_969	1,249.3	14,836,697.2	Generation contributing to flow from Gunnedah to Tamworth 132 kV				


VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
GNNDHSF1	Gunnedah S	olar Farm	110	10.0	2.9	25,159		
MOREESF1	Moree So	ar Farm	56	0.3	0.0	340		
Historical host	ing capacity indicat	or for 20% netwo	rk spill threshold ²					
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
GNNDHSF1	Gunnedah	Solar Farm	100	178	0	0		
VRE curtailmer	nt and economic off	loading – ISP fore	cast					
	2025-	2026	2026	-2027	2027-	2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	0	4	1	10	1	9		

² The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

A3.6 N2 – New England

REZ information

³ Options shown are a subset of the Central New South Wales to Northern New South Wales flow path options.

⁴ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

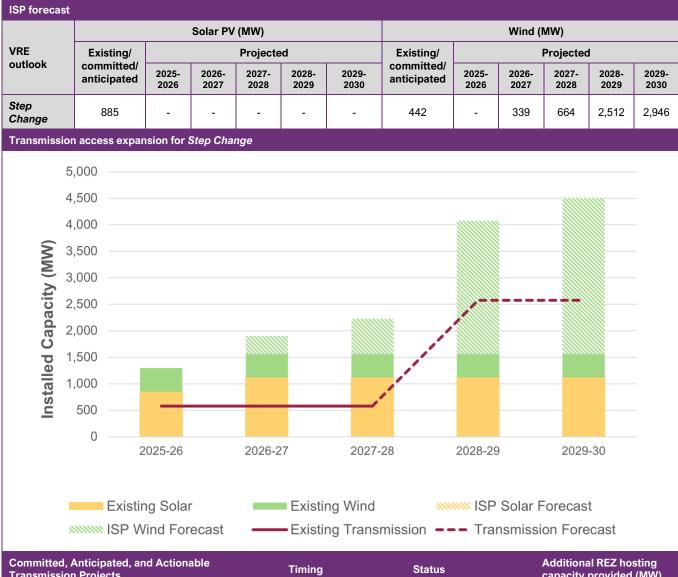
⁵ EnergyCo. New England Renewable Energy Zone, at <u>https://www.energyco.nsw.gov.au/projects/new-england-transmission-project</u>.

⁶ See https://www.energyco.nsw.gov.au/about-us/network-infrastructure-strategy-nsw.

AEMO Services	AEMO Services (appointed as Consumer Trustee) conducts tenders for projects generation, storage, firming infrastructur that can be recovered from consumers, in accordance with the Infrastructure Investment Objectives (IIO) Report.					nfrastructure lance with the		
Resource metrics								
Resource		Solar			Wi	nd		
Resource Quality		С			С			
Renewable Potential (MW)		2,985 ⁸		7,400				
Demos d O and a firm	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50	
Demand Correlation	F	F	F	A/B	ŀ	٩	А	
Climate hazard								
Temperature score	С			Bushfire score E			E	

Marginal loss factors

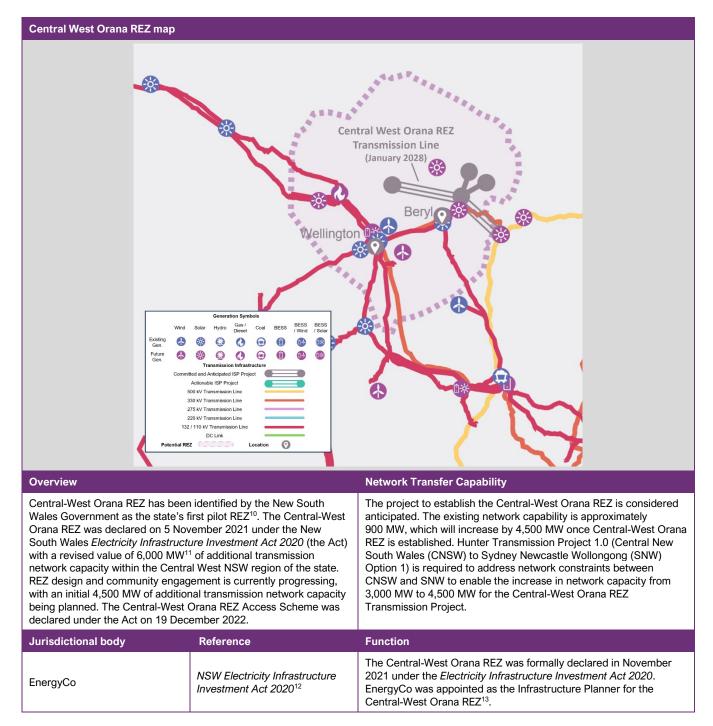
Marginal Loss Factor							
Technology Voltage (kV) 2025-26 MLF							
Color	132	0.8149 - 0.8557					
Solar	330	0.8803					
	132	0.8149					
Wind	330	0.8558					
Marginal Loss Factor Robustness							
MLF Robustness score	2029-30	2034-35	2039-40				
	А	А	A				


Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
N>>NIL_85_86_S	76.3	194,168.7	Generation contributing to flow from Uralla to Tamworth 330 kV on trip of the Armidale – Tamworth 330 kV line				
N>>NIL_86_85_S	61.9	225,790.5	Generation contributing to flow from Armidale to Tamworth 330 kV on trip of Uralla to Tamworth 330 kV line				
N>>NIL_966/1	125.0	425,861.4	Generation contributing to flow from Metz Tee to Armidale 132 kV				
Q^^N_NIL_SRAR	9.0	76,672.9	Generation contributing to southward flow on QNI				

⁷ AEMO Services Tenders, at https://aemoservices.com.au/tenders.

⁸ New England REZ solar outlook exceeds the expected renewable solar potential based on the geographical size and resource quality. The modelling allows for additional solar above this solar resource limit, but the additional solar capacity incurs a land use penalty factor of \$0.29 million/MW. Even with this penalty applied, the ISP model still projects additional solar capacity in *Step Change* by 2049-50.

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generato	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
METZSF1	Metz Sola	ar Farm	115	0.4	0.1	774		
NEWENSF1	New England	Solar Farm	200	3.3	1.7	14,658		
NEWENSF2	New England	Solar Farm	200	2.6	1.3	11,690		
SAPHWF1	Sapphire W	/ind Farm	270	0.0	0.0	107		
WRSF1	White Rock	Solar Farm	20	0.0	0.0	16		
WRWF1	White Rock	Wind Farm	172	0.4	0.2	1,719		
Historical hosti	ng capacity indicato	r for 20% network	spill threshold ⁹					
DUID	Generato	r name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
METZSF1	Metz Sola	r Farm	212	275	0	32		
NEWENSF1	New England	Solar Farm	300	300	0	300		
SAPHWF1	Sapphire W	ind Farm	300	300	0	295		
WRSF1	White Rock S	Solar Farm	300	300	0	0		
WRWF1	White Rock Wind Farm		300	300	0	0		
VRE curtailment – ISP forecast								
	2025-	2026	2026-2027		2027-2028			
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	10	16	15	26	24	34		


⁹ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

Transmission Projects	Timing	Status	capacity provided (MW)
New England REZ Network Infrastructure Project (Flow Path CNSW-NNSW Option 1)	Proponent: July 2032 ISP Step Change: 2028-29	Actionable NSW	2,000
New England REZ Network Infrastructure (REZ N2 Option 1)	Proponent: July 2032 ISP Step Change: 2030-31	Actionable NSW	1,000
New England REZ Network Infrastructure Project (Flow Path CNSW-NNSW Option 2)	Proponent: Jan 2034 ISP Step Change: 2034-35	Actionable NSW	3,000

A3.7 N3 – Central West Orana

REZ information

¹⁰ EnergyCo, Central-West Orana Renewable Energy Zone, at <u>https://www.energyco.nsw.gov.au/cwo-rez</u>.

- ¹¹ Government Gazette No 580 of Friday 15 December 2023, at <u>https://www.energyco.nsw.gov.au/sites/default/files/2024-08/Gazette 2023 2023-580.pdf</u>.
- ¹² New South Wales Government, *Electricity Infrastructure Investment Act 2020* (NSW), at <u>https://legislation.nsw.gov.au/view/html/inforce/</u> <u>current/act-2020-044</u>.
- ¹³ EnergyCo, Central-West Orana Renewable Energy Zone, at <u>https://www.energyco.nsw.gov.au/cwo-rez</u>.

EnergyCo	Network Infrastru Strategy ¹⁴	ucture	EnergyCo's strategy to coordinate New South Wales network infrastructure to connect new generation and storage in New South Wales' five REZs.				
AEMO Services	Long Term Energ Agreement (LTE		AEMO Services (appointed as Consumer Trustee) conducts tenders for projects generation, storage, firming infrastructure that can be recovered from consumers, in accordance with the Infrastructure Investment Objectives (IIO) Report.				e that can be
Resource metrics							
Resource		Solar		Wind			
Resource Quality		С		С			
Renewable Potential (MW)		6,850		3,000 ¹⁶			
	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F F F			A	ļ	4	A
Climate hazard			·				
Temperature score	С			Bushfire score			E

Marginal loss factors

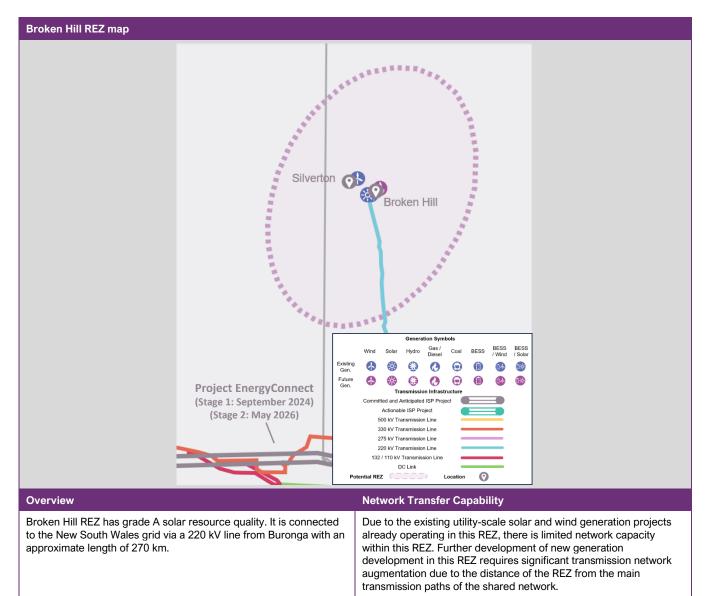
Marginal Loss Factor						
Technology	Voltage (kV) 2025-26 MLF					
	66	0.8888 –	0.9573			
Solar	132	0.9073 – 0.9793				
	330	0.9339 – 0.9429				
Wind	132	0.9638 –	1.0278			
Marginal Loss Factor Robustness						
MLF Robustness score	2029-30	2034-35	2039-40			
	A	A	A			

Congestion information – calendar year 2024					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
N>NIL_94K_1	445.6	4,257,427.8	Generation contributing to flow from Suntop to Wellington 132 kV		
N>NIL_94T	1,812.9	31,758,804.4	Generation contributing to flow from Molong to Orange North 132 kV		
N>NIL_94T_79	12.9	196,218.8	Generation contributing to flow from Molong to Orange North 132 kV on trip of the Wellington-Orange North 132 kV line		
N>NIL_94T_947	48.3	396,426.6	Generation contributing to flow from Molong to Orange North 132 kV on trip of the Wellington-Orange North 132 kV line		

¹⁴ See <u>https://www.energyco.nsw.gov.au/about-us/network-infrastructure-strategy-nsw.</u>

¹⁵ AEMO Services Tenders, <u>https://aemoservices.com.au/tenders</u>.

¹⁶ Central-West Orana REZ wind outlook exceeds the expected renewable wind potential based on the geographical size and resource quality. The modelling allows for additional wind above this wind resource limit, but the additional wind capacity incurs a land use penalty factor of \$0.29 million/MW. Even with this penalty applied, the ISP model still projects almost double this renewable wind potential in all scenarios by 2029-30.


VRE semi-sche	eduled curtailment –	calendar year 202	4			
DUID	Generato	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BERYLSF1	Beryl Sol	ar Farm	87	0.4	0.1	834
BODWF1	Bodangora	Wind Farm	111	0.2	0.1	584
FLYCRKWF	Flyers Creek	Wind Farm	140	0.5	0.1	1,149
GOONSF1	Goonumbla	Solar Farm	69	18.5	3.4	30,151
MANSLR1	Manildra so	olar Farm	46	37.9	4.0	35,359
MOLNGSF1	Molong Sc	olar Farm	30	53.8	4.3	37,671
NEVERSF1	Nevertire S	olar Farm	105	0.6	0.2	1,366
NYNGAN1	Nyngan So	olar Plant	102	0.1	0.0	211
STUBSF1	Stubbo Sol	ar Farm 1	202	0.0	0.0	0
STUBSF2	Stubbo Sol	ar Farm 2	198	0.0	0.0	0
SUNTPSF1	Suntop Sc	lar Farm	150	2.8	1.0	8,530
WELLSF1	Wellington S	Solar Farm	170	0.7	0.3	2,519
WELNSF1	Wellington North Solar Farm		330	3.9	2.7	14,724
Historical host	ing capacity indicate	or for 20% networl	spill threshold ¹⁷			
DUID	Generato	or name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)
BERYLSF1	Beryl Sol	ar Farm	63	213	0	0
BODWF1	Bodangora	Wind Farm	55	175	0	0
FLYCRKWF	Flyers Creek	Wind Farm	300	300	300	300
GOONSF1	Goonumbla	Solar Farm	0	192	0	0
MANSLR1	Manildra s	olar Farm	0	300	0	0
MOLNGSF1	Molong Sc	olar Farm	18	294	0	0
NEVERSF1	Nevertire S	olar Farm	101	300	0	0
NYNGAN1	Nyngan So	olar Plant	101	300	0	0
SUNTPSF1	Suntop Sc	olar Farm	1	292	0	0
WELLSF1	Wellington S	Solar Farm	123	300	0	0
VRE curtailme	nt – ISP forecast					
	2025-	2026	2026	5-2027	2027-2028	
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)
Step Change	15		12			22

¹⁷ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

A3.8 N4 – Broken Hill

REZ information

Jurisdictional body

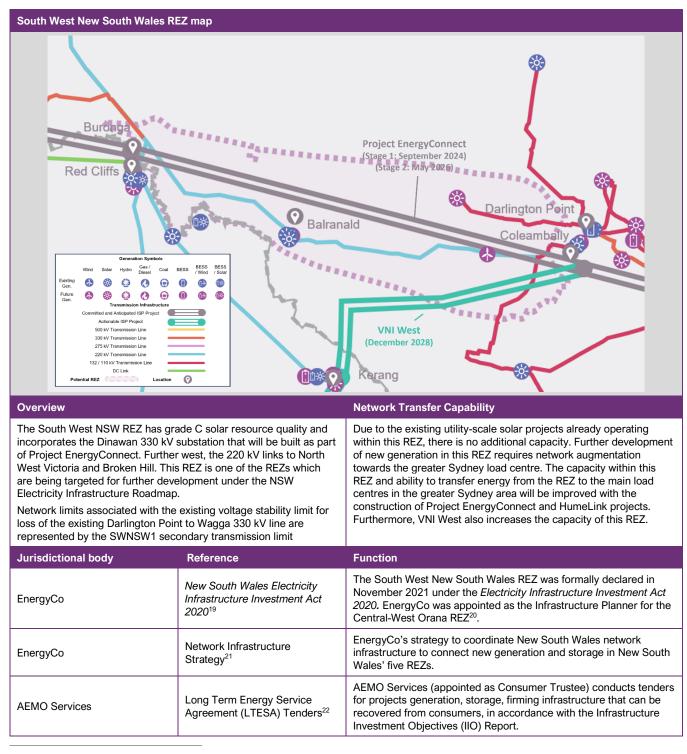
The Broken Hill New South Wales REZ's jurisdictional planning body is Transgrid. It is not presently declared under the *Electricity Infrastructure Investment Act.*

Resource metrics							
Resource	Solar			Wind			
Resource Quality	A			D			
Renewable Potential (MW)	8,000			5,100			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039	9-40	2049-50
Demand Correlation	F	F	F	А	Ą	Ą	А
Climate hazard							
Temperature score		E		Bushfire score			С

Marginal loss factors

Marginal Loss Factor						
Technology	Voltage (kV) 202		26 MLF			
Solar	22	22 0.8642				
Wind	220	0.8627				
Marginal Loss Factor Robustness						
MLF Robustness score	2029-30	2034-35	2039-40			
MLF Robustness score	F	F	F			

Congestion information – calendar year 2024					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
N>NIL_BHTX_NIL_HV	8.7	279,710.2	Generation exporting from 22 kV through the 220/22 kV Broken Hill transformer, when one 220/22 kV Broken Hill transformer is out of service		
N>NIL_BHTX_SF_TTS_HV	27.0	1,467,566.6	Generation exporting from 22 kV through the 220/22 kV Broken Hill transformer, when one 220/22 kV Broken Hill transformer is out of service		
N>NIL-BHTX_BHTX_NIL	5.9	51,035.8	Generation exporting from 22 kV through the 220/22 kV Broken Hill transformer, when one 220/22 kV Broken Hill transformer is out of service		


VRE semi-scheduled curtailment – calendar year 2024							
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
BROKENH1	Broken Hill	Solar Plant	53	11.1	1.4	12,546	
STWF1	Silverton W	/ind Farm	198	3.4	2.2	19,741	
Historical hosti	ng capacity indicate	or for 20% network	spill threshold ¹⁸				
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)	
BROKENH1	Broken Hill :	Solar Plant	0	77	0	0	
STWF1	Silverton W	/ind Farm	0	232	0	0	
VRE curtailmen	t – ISP forecast						
	2025-	2026	2026	-2027	2027-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	
Step Change	0	0	3	9	2	12	

¹⁸ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

A3.9 N5 – South West New South Wales

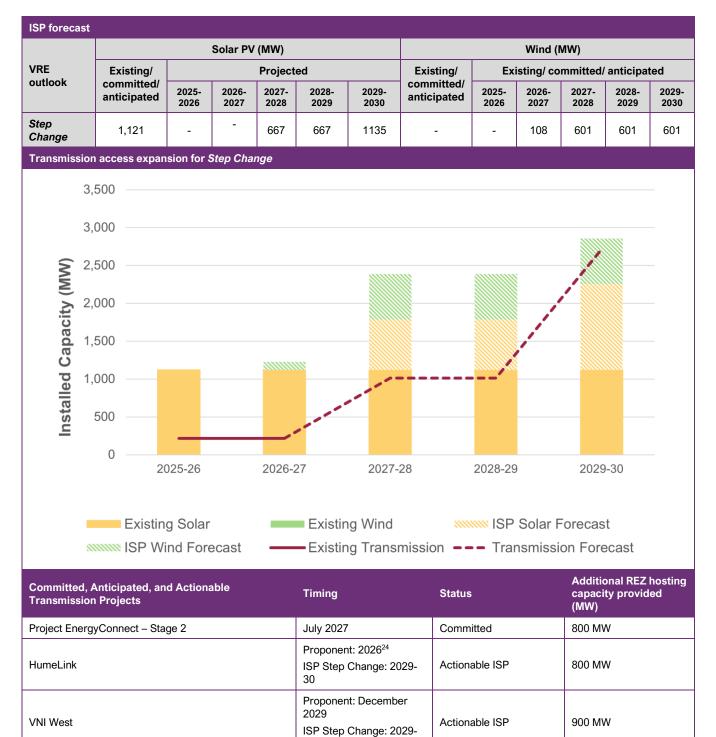
REZ information

¹⁹ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

- ²⁰ EnergyCo, South-West Renewable Energy Zone, at <u>https://www.energyco.nsw.gov.au/sw-rez</u>.
- ²¹ See <u>https://www.energyco.nsw.gov.au/about-us/network-infrastructure-strategy-nsw.</u>
- ²² AEMO Services Tenders, at <u>https://aemoservices.com.au/tenders</u>.

N5 – South West New South Wales

Resource metrics							
Resource	Solar			Wind			
Resource Quality	С			E			
Renewable Potential (MW)	2,256			3,900			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F	F	F	В	B	/A	B/A
Climate hazard							
Temperature score	E			Bushfire score D			D

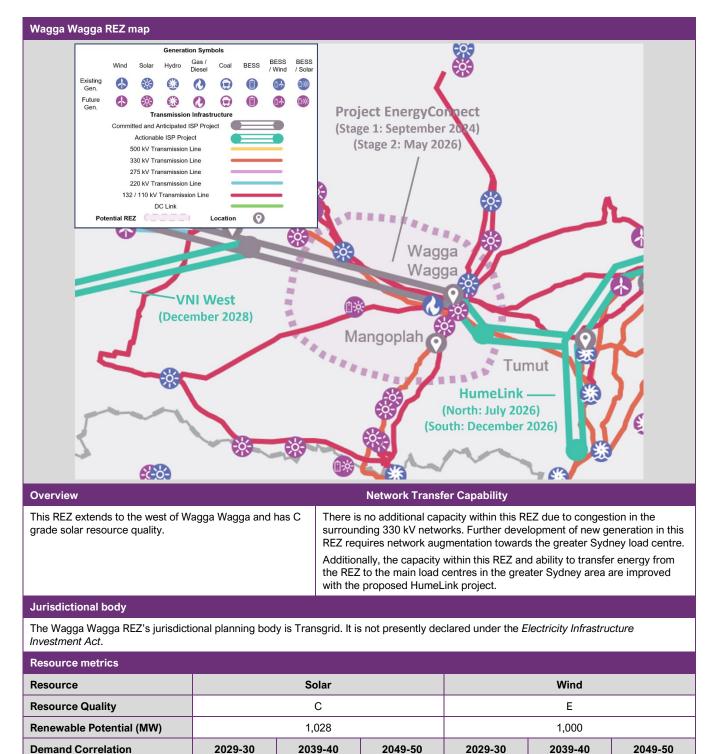

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2025-26 MLF			
	22	22 0.8528			
Solar	132	0.9355			
	220	0.8529			
Marginal Loss Factor Robustness					
MLF Robustness score	2029-30	2034-35	2039-40		
	А	A	А		

Congestion information – calendar year 2024					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
N^^N_NIL_X5_xxx	501.8	3,109,207.6	Generation contributing to flow from Balranald to Darlington Point 220 kV on trip of the Bendigo – Shepparton 220 kV line		
V^^SML_NSWRB_2	20.8	169,863.3	Generation in North West Victoria		
V>>NIL_WBBA_RCBSS	15.1	51,336.6	Generation contributing to flow from Waubra to Ballarat 220 kV on trip of the Red Cliffs – Buronga 220 kV line		

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generato	or name	Maximum Capacity (MW)			Curtailment (MWh)				
CRWASF1	Corowa So	Corowa Solar Farm		30 5.0		3,546				
LIMOSF11	Limondale S	olar Farm 1	220	10.7	6.5	56,817				
LIMOSF21	Limondale S	olar Farm 2	29	11.0	1.0	8,462				
SUNRSF1	Sunraysia S	Solar Farm	200	8.1	4.3	37,484				
Historical hosting capacity indicator for 20% network spill threshold ²³										
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
CRWASF1	Corowa Solar Farm		1	35	0	8				
LIMOSF11	Limondale So	olar Farm 1	0	106	0	0				
LIMOSF21	Limondale Solar Farm 2		0	106	0	0				
SUNRSF1	SUNRAYSIA SF		0 106		0	0				
VRE curtailmen	nt – ISP forecast									
	2025-	2026	202	6-2027	2027-2028					
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	11	16	9	17	1	9				

²³ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.



30

²⁴ The timing advised by the proponent for the Northern Circuit (Gugaa to Bannaby) is July 2026. The timing advised by the proponent for the Southern Circuit (Gugaa to Maragle to Bannaby) is December 2026.

A3.10 N6 – Wagga Wagga

REZ information

2049-50

F

В

В

F

2029-30

F

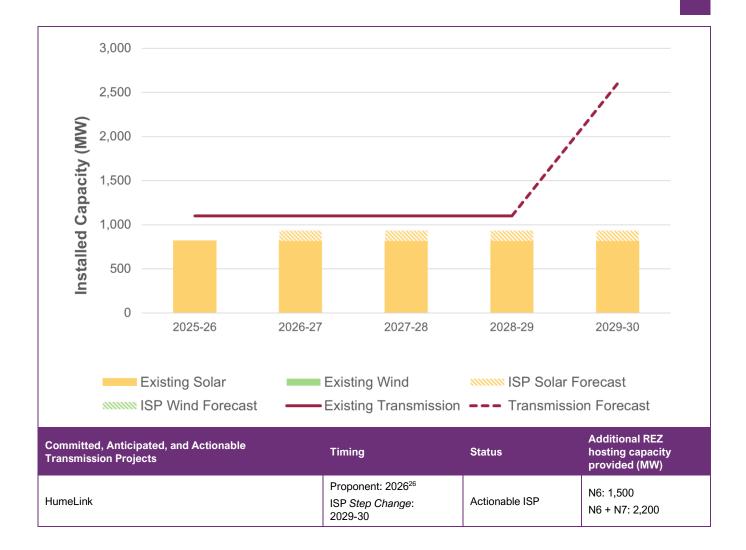
Demand Correlation

2049-50

В

D

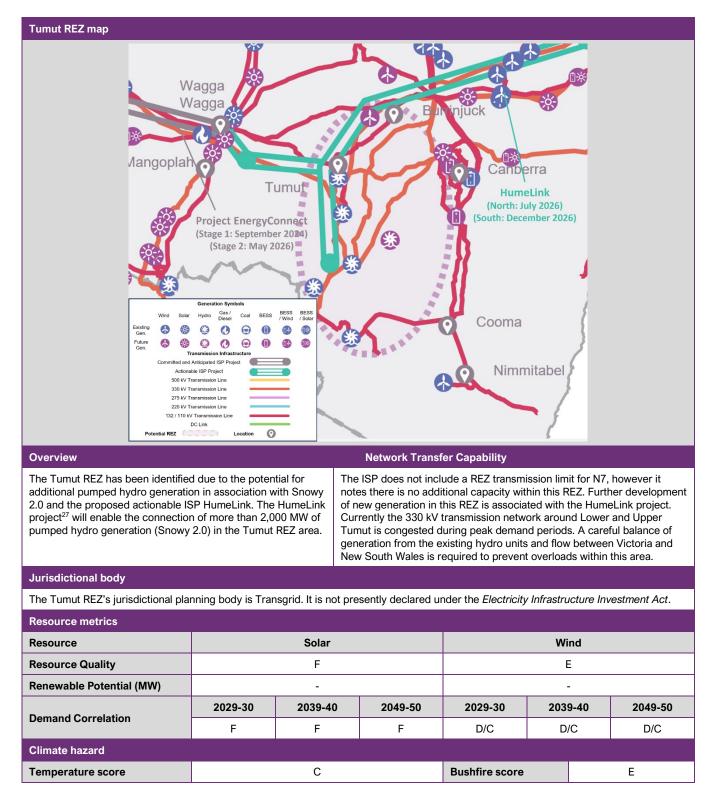
Marginal loss factors


Marginal Loss Factor									
Technology	Voltage (kV)	2025-26 MLF							
Solar	66	0.9183							
Solar	132	0.8698 – 0.9220							
Marginal Loss Factor Robustness									
MLF Robustness score	2029-30	2034-35	2039-40						
	A	A	A						

Congestion information – calen	dar year 2024		
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
N::N_NIL_63	78.0	580,633.4	Generation contributing to flow from Darlington Point to Wagga Wagga 330 kV
N>>NIL_996_62	14.3	160,866.6	Generation contributing to flow from Wagga to ANM 132 kV on trip of the Walla Walla – Jindera 330 kV line
N>>NIL_9XX_051	1,001.6	20,233,638.3	Generation contributing to flow from Burrinjuck to Yass 132 kV, Wagga to Yass 132 kV or Wagga North to Murrumburrah 132 kV on trip of the Wagga – Lower Tumut 330 kV line
N>NIL_997/1_62	6.1	69,598.4	Generation contributing to flow from Corowa to Albury 132 kV on trip of the Wagga – Jindera 330 kV line
N>NIL_997/1_6Y	32.6	531,544.7	Generation contributing to flow from Corowa to Albury 132 kV on trip of the Wagga – Walla Walla 330 kV line
N>NIL_997/2_99A	26.5	170,820.3	Generation contributing to flow from Mulwala to Corowa 132 kV on trip of the Finley – Uranquinty 132 kV line
N>NIL_997_99A	215.8	2,172,206.2	Generation contributing to flow from Corowa to Albury 132 kV on trip of the Finley – Uranquinty 132 kV line
N>NIL_99F	156.3	997,508.1	Generation contributing flow from Narrandera to Uranquinty 132 kV
N>NIL_99U	19.0	119,081.8	Generation contributing to flow from Sebastopol to Wagga North 132 kV
N>NIL_9R4_99A	411.0	2,505,836.5	Generation contributing to flow from Finley to Mulwala 132 kV on trip of Finley – Uranquinty 132 kV line
N>NIL_9R5_9R6_N	26.8	3,845,701.8	Generation contributing to flow from Finley to Mulwala 132 kV on trip of Finley – Uranquinty 132 kV line
N>NIL_9R6_991	1,048.9	10,367,827.0	Generation contributing to flow from Wagga North to Wagga 132 kV on trip of the Wagga North – Murrumburrah 132 kV line
N>NIL_9R6_9R5	536.4	3,721,729.8	Generation contributing to flow from Wagga North to Wagga 132 kV on trip of the Wagga North – Wagga 330 kV line
N>NIL_9R6_9R5_N	4.8	199,503.9	Generation contributing to flow from Wagga 132 to Wagga North 132 kV on trip of the Wagga 330 – Wagga North 330 kV line
N>N-NIL_JUTX_LV	49.5	315,635.3	Generation exporting from 66 kV through the 132/66 kV Junee transformer

VRE semi-sche	duled curtailment –	calendar year 2024	1							
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
AVLSF1	Avonlie Solar Farm		190	2.7	1.5	12,889				
BOMENSF1	Bomen Sc	lar Farm	100	13.5	3.0	26,388				
JUNEESF1	Junee So	lar Farm	30	15.1	1.2	10,600				
SEBSF1	Sebastopol	Solar Farm	90	17.4	4.4	38,813				
WAGGNSF1	Wagga North	Solar Farm	48	14.3	1.7	15,147				
Historical hosting capacity indicator for 20% network spill threshold ²⁵										
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
AVLSF1	Avonlie Solar Farm		300	300	18	107				
BOMENSF1	Bomen Sc	lar Farm	0	282	0	0				
JUNEESF1	Junee So	lar Farm	0	45	0	0				
SEBSF1	Sebastopol	Solar Farm	0	236	0	0				
WAGGNSF1	Wagga North	Solar Farm	0	282	0	0				
VRE curtailmen	nt – ISP forecast									
	2025-	2026	2026	-2027	2027-2028					
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	0	1	0	3	0	6				

ISP forecast												
VRE outlook	Solar PV (MW)						Wind (MW)					
	Existing/	Projected				Existing/						
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	456	0	118	118	118	118	-	-	-	-	-	-
Transmission access expansion for Step Change												


²⁵ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

²⁶ The timing advised by the proponent for the Northern Circuit (Gugaa to Bannaby) is July 2026. The timing advised by the proponent for the Southern Circuit (Gugaa to Maragle to Bannaby) is December 2026.

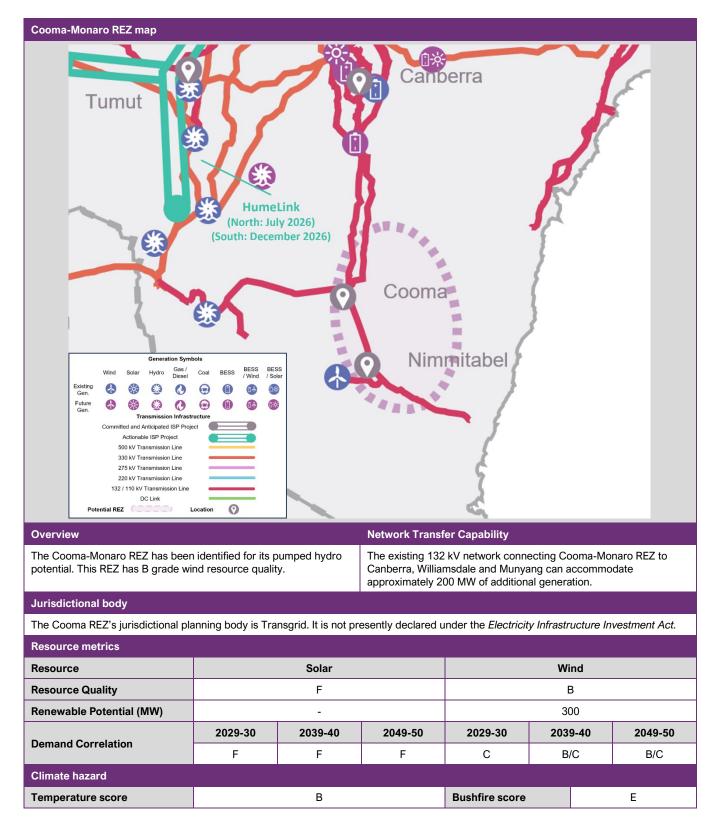
A3.11 N7 – Tumut

REZ information

²⁷ Transgrid, HumeLink project, at <u>https://www.transgrid.com.au/HumeLink</u>.

Marginal Loss Factor							
Technology	Voltage (kV) 2025-26 MLF						
-	-	-					
Marginal Loss Factor Robustness							
MLF Robustness score	2029-30	2034-35	2039-40				
MLF RODUSTNESS SCORE	-	-	-				

Congestion information – calend	lar year 2024		
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
N>>NIL_1_7	1.0	130,909.0	Generation contributing to flow from Upper Tumut to Stockdill 1 330 kV on trip of the Lower Tumut – Canberra 330 kV line
N>>NIL_9XX_051	1,001.6	20,233,638.3	Generation contributing to flow from Burrinjuck to Yass 132 kV, Wagga to Yass 132 kV or Wagga North to Murrumburrah 132 kV on trip of the Wagga – Lower Tumut 330 kV line
N>>NIL_YSTX_051	233.6	1,925,726.7	Generation exporting from 330 kV through either of the 132/330 kV Yass transformers on trip of the Wagga – Lower Tumut
N>NIL_977_976	1.3	187,350.6	Generation contributing to flow from either Canberra to Queanbeyan 132 kV on trip of the other Canberra – Queanbeyan 132 kV line
V>>N_NIL_65_66	45.6	79,920.5	Generation contributing to flow from Murray to Upper Tumut 330 kV on trip of Murray – Lower Tumut 330 kV


VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
-	-		-	-	-	-		
Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW) HHCI Wind + BESS (MW)		HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-			-	-	-		
VRE curtailmen	t – ISP forecast							
	2025-	2026	2026	-2027	2027-2028			
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	0	0	0	0	0	0		

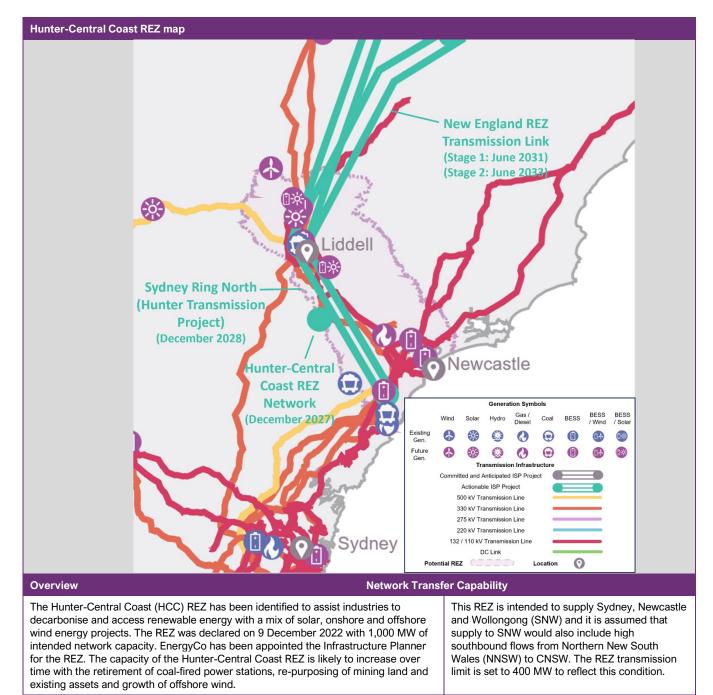
ISP forecast												
Solar PV (MW)									Wind (MW)		
VRE outlook	Existing/			Projected	ł		Existing/			Projected	I	
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	270	-	-	-	-	-
Transmission a	access expans	ion for St	tep Chan	ge								
There is no e	existing, commit additional VF		•				ne modelling ou r transmission e				• •	ct any
Committed, Anticipated, and Actionable Transmission Projects			mission	Timing		Status		Additional REZ hosting capacity provided (MW)				
HumeLink			Propone	ent: 2026 ²	8							
			ISP Step 2029-30	o Change:	Actionable ISP		N6 + N	N6 + N7: 2,200				

²⁸ The timing advised by the proponent for the Northern Circuit (Gugaa to Bannaby) is July 2026. The timing advised by the proponent for the Southern Circuit (Gugaa to Bannaby) is December 2026.

A3.12 N8 - Cooma-Monaro

REZ information

Marginal Loss Factor									
Technology	Voltage (kV) 2025-26 MLF								
Wind	132	0.9557					0.9557		
Marginal Loss Factor Robustness									
MLE Debustment second	2029-30	2034-35	2039-40						
MLF Robustness score	F	F	F						


Congestion information – calendar year 2024							
Constraint ID	nstraint ID Binding Marginal hours value (\$)		Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024									
DUID	Generator name		Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)	
BOCORWF1	Boco Rock Wind Farm		111	0.6	0.2	1,980			
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)			
-	-				-	-			
VRE curtailmen	t – ISP forecast								
	2025-	2026	2026	-2027	2027-2028				
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)			
Step Change	0	0	3	7	3	10			

A3.13 N9 – Hunter-Central Coast

REZ information

Jurisdictional body	Reference	Function
EnergyCo	NSW Electricity Infrastructure Investment Act 2020 ²⁹	Hunter Central Coast REZ was formally declared in November 2021 under the <i>Electricity Infrastructure Investment Act 2020</i> . EnergyCo was appointed as the Infrastructure Planner for the Central-West Orana REZ ³⁰ .

²⁹ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

³⁰ EnergyCo. Hunter-Central Coast Renewable Energy Zone, at <u>https://www.energyco.nsw.gov.au/hcc-rez</u>.

EnergyCo	Network Infrastru Strategy ³¹	ucture	EnergyCo's strategy to coordinate New South Wales network infrastructure to connect new generation and storage in New South Wales' five REZs.				
AEMO Services	Long Term Energ Agreement (LTE		AEMO Services (appointed as Consumer Trustee) conducts tenders for projects generation, storage, firming infrastructure that can be recovered from consumers, in accordance with the Infrastructure Investment Objectives (IIO) Report.				e that can be
Resource metrics							
Resource		Solar		Wind			
Resource Quality		D		D			
Renewable Potential (MW)		516 ³³		1,400			
Demond Connelation	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F	F	F	A/B	A	/B	A/B
Climate hazard					·		
Temperature score	A			Bushfire score E			

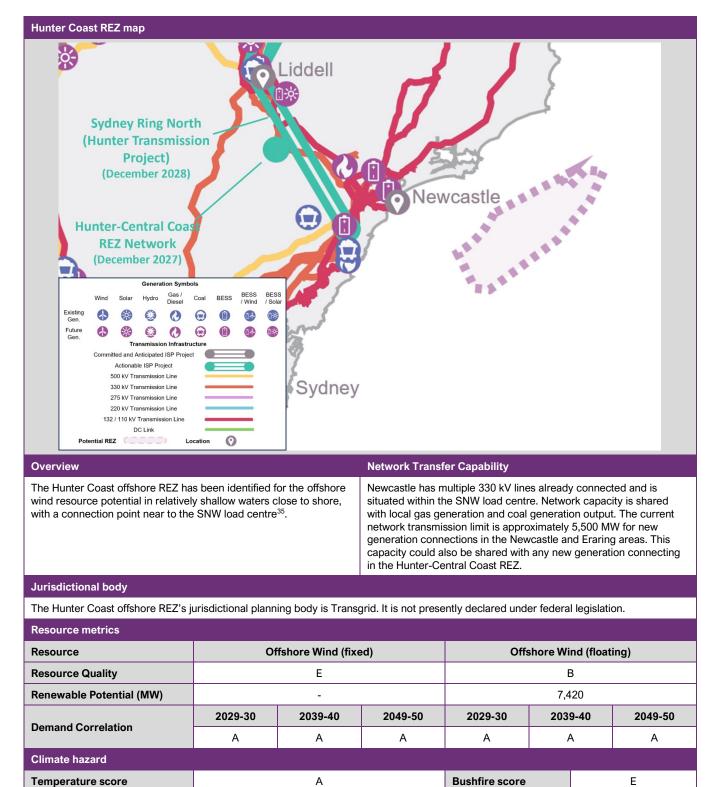
Marginal Loss Factor									
Technology	Voltage (kV) 2025-26 MLF								
-	-	-							
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness								
	2029-30	2034-35	2039-40						
MLF Robustness score	А	A	A						

Congestion information – calendar year 2024								
Constraint ID	Binding Marginal hours value (\$)		Most affected generation					
-	-	-	-					

³¹ See <u>https://www.energyco.nsw.gov.au/about-us/network-infrastructure-strategy-nsw.</u>

³² AEMO Services Tenders, at <u>https://aemoservices.com.au/tenders</u>.

³³ Hunter-Central Coast REZ solar and wind VRE outlook both exceed the expected renewable potential based on the geographical size and resource quality. The modelling allows for additional solar and wind above these resource limits, but the additional capacity incurs a land use penalty factor of \$0.29 million/MW. Even with this penalty applied, the ISP model still projects additional solar and wind capacity in *Step Change* by 2049-50.


VRE semi-scheduled curtailment – calendar year 2024									
DUID	Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)			
-	-		-	-	-	-			
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)			
-	-				-	-			
VRE curtailmen	t – ISP forecast								
	2025-	2026	2026	-2027	2027-2028				
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)			
Step Change	-	-	3	5	3	6			

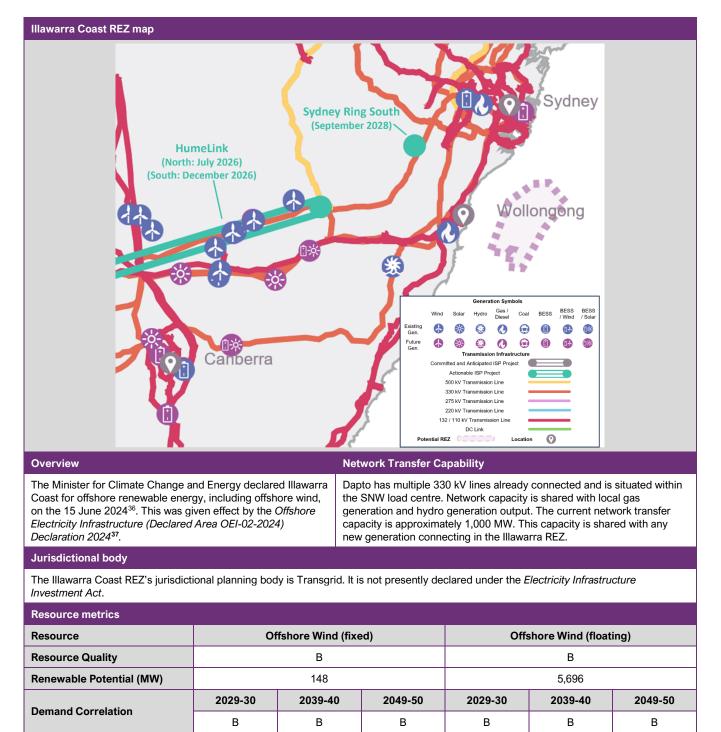
³⁴ The timings advised by the proponent for Component 1, Component 2 and Component 3 are December 2025, June 2028 and July 2028, respectively.

A3.14 N10 – Hunter Coast

REZ information

³⁵ Federal Government, Hunter offshore wind zone declaration, at <u>https://www.dcceew.gov.au/energy/renewable/offshore-wind/areas/hunter</u>

Marginal Loss Factor								
Technology	Voltage (kV) 2025-26 MLF							
-	-	-						
Marginal Loss Factor Robustnes	s							
MLF Robustness score	2029-30	2034-35	2039-40					
	-	-	-					


Congestion information – calendar year 2024							
Constraint ID Binding hours Marginal value (\$) Most affected generation							
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold									
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
-	-				-	-				
VRE curtailmer	nt – ISP forecast									
	2025-	-2026	2026	-2027	2027	2027-2028				
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	-	-	-	-	-	-				

ISP forec	ISP forecast											
	Solar PV (MW)						w	ind (MW	/)			
	Existing/	Projected					Existing/ committed/			Projected		
outlook	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030		2025- 2026	2026- 2027	2027-2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmis	sion access ex	pansior	n for Ste	p Chang	ge							
There a	U ,		,	•			is REZ and the modelling o urtailment or transmission e				ot projec	t any
Committed, Anticipated, and Actionable Transmission Projects				Timinę	Timing Status		Status hostin			ional RE ng capa ded (MV	city	
-							-			-		

A3.15 N11 – Illawarra Coast

REZ information

 Climate hazard

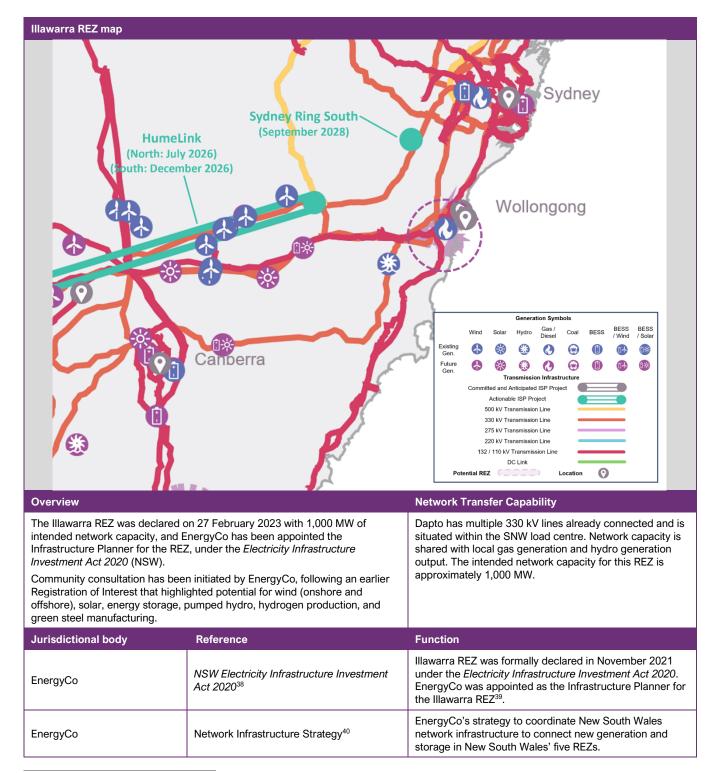
 Temperature score
 C

 Bushfire score
 C

³⁶ See <u>https://www.dcceew.gov.au/energy/renewable/offshore-wind/areas/illawarra</u>.

³⁷ See https://www.legislation.gov.au/F2024L00685/asmade/text.

Marginal Loss Factor								
Technology	Voltage (kV) 2025-26 MLF							
-	-	-						
Marginal Loss Factor Robustnes	s							
	2029-30	2034-35	2039-40					
MLF Robustness score	-	-	-					


Congestion information – calendar year 2024							
Constraint ID	Binding hours	Most affected generation					
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold									
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
-	-		-	-	-	-				
VRE curtailmen	nt – ISP forecast									
	2025-	2026	2026	-2027	2027	-2028				
Scenario	Curtailment (%) Economic offloading (%)		Curtailment (%)	rtailment (%) Economic offloading (%)		Economic offloading (%)				
Step Change	-	-	-	-	-	-				

ISP forecast												
		Solar PV (MW)							Wind (MW)		
VRE outlook	Existing/		Projected	i		Existing/			Projected	t		
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for S	tep Chan	ge								
There are no	existing, comm addiitonal VF		•				the modelling o r transmission e					ct any
Committed, Anticipated, and Actionable Transmission Projects					Timing Status			Additional REZ hosting capacity provided (MW)				
-		-				-						

A3.16 N12 – Illawarra

REZ information

³⁸ See <u>https://legislation.nsw.gov.au/view/html/inforce/current/act-2020-044#sec.23</u>.

³⁹ At <u>https://www.energyco.nsw.gov.au/ilw-rez</u>.

⁴⁰ See <u>https://www.energyco.nsw.gov.au/about-us/network-infrastructure-strategy-nsw.</u>

AEMO Services	Long Term Energy Service Agreement (LTESA) Tenders ⁴¹				EMO Services (appointed as Consumer Trustee) anducts tenders for projects generation, storage, firming frastructure that can be recovered from consumers, in ecordance with the Infrastructure Investment Objectives O) Report.			
Resource metrics								
Resource		Solar			Wind			
Resource Quality		F			E			
Renewable Potential (MW)		-			-			
Demand Correlation	2029-30	2039-40	2049-	50	2029-30	2039-40	2049-50	
Demand Correlation	-					-	-	
Climate hazard								
Temperature score	- Bushfire score -					-		

Marginal Loss Factor								
Technology	Voltage (kV) 2025-26 MLF							
-	-		-					
Marginal Loss Factor Robustnes	s							
MLF Robustness score	2029-30	2034-35		2039-40				
MLF RODUSTIESS SCORE	-	-		-				

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
N>>NIL_39_11	3.8	149,308.3	Generation contributing to flow from Bannaby to Sydney West 330 kV on trip of the Dapto – Sydney South 330 kV line				
N>>NIL_39_17	1.1	192,471.6	Generation contributing to flow from Bannaby to Sydney West 330 kV on trip of the Avon – Macarthur 330 kV line				
N>>NIL_998_18	6.3	265,679.7	Generation contributing to flow from Cowra to Forbes 132 kV on trip of the Kangaroo Valley – Dapto 330 kV line				
N>NIL_983_987	73.3	277,105.4	Generation contributing to flow from Tallawarra to Dapto (983) 132 kV on trip of the Tallawarra – Dapto (987) 132 kV line				

⁴¹ AEMO Services Tenders, at <u>https://aemoservices.com.au/tenders</u>.

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold									
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
-	-				-	-				
VRE curtailmen	it – ISP forecast									
	2025	-2026	2026	-2027	2027	-2028				
Scenario	cenario Curtailment (%) Economic offloading (%)		Curtailment (%)	Curtailment (%) Curtailment (%)		Curtailment (%)				
Step Change	-	-	-	-	-	-				

VRE outlook	Solar PV (MW)						Wind (MW)					
	Existing/	/ Projected					Existing/	Projected				
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission access expansion for Step Change												
There are no	existing, comm addiitonal VF						the modelling o r transmission e					ct any
Committed, Anticipated, and Actionable Transmission Projects			Timing		Status		Additional REZ hosting capacity provided (MW)					
-					-		-			-		

A3.17 Non-REZ

Congestion information -	calendar y	ear 2024				
Constraint ID	Binding Marginal hours value (\$)		Most affected generation			
N^^V_NIL_1	209.8	246,112.7	NSW generation, via limitation of NSW to VIC transfer			
N^^V_NIL_ARWBBA	106.9	65,465.5	Generation in North West VIC			
N>>NIL_33_34	259.3	1,438,642.7	Generation contributing to flow from Bayswater to Liddell 330 kV on loss of parallel Bayswater – Liddell 330 kV line			
N>>NIL_4	5.2	221,585.2	Generation contributing to flow from Collector to Marulan 330 kV			
N>>NIL_964_84_S	640.0	941,823.8	Generation contributing to flow from Port Macquarie to Herron Creek 132 kV on trip of the Tamworth – Liddell 330 kV line			
N>>NIL_998	9.4	175,288.8	Generation contributing to flow from Cowra to Forbes 132 kV			
N>NIL_901	334.4	2,598,279.9	Generation contributing to flow from West Wyalong to Temora 132 kV			
N>NIL_999	5.3	382,179.4	Generation contributing to flow from Bango 999 to Cowra 132 kV			
N>NIL_9GL	13.6	105,054.0	Generation contributing to flow from Bango 973 to Yass 132 kV			
N>NIL_9GM	33.3	321,057.2	Generation contributing to flow from Bango 999 to Yass 132 kV			
N>NIL_9ML	56.7	408,580.1	Generation contributing to flow from Crudine Ridge to Ilford Tee 132 kV			
N>NIL_COTX_LV	96.3	678,406.3	Generation exporting from 22 kV through the 22/132 kV Corowa transformers			
N>NIL_LSDU	242.3	135,474.8	Generation contributing to flow from Lismore to Dunoon 132 kV on trip of the parallel line			
N>NIL_MBDU	44.8	17,303.8	Generation contributing to flow from Mullumbimby to Dunoon 132 kV on trip of a parallel line			
N>NIL_PKTX_LV	468.7	2,630,046.2	Generation exporting from 66 kV through the 132/66 kV Parkes transformers			
N>Q-NIL_757_758	462.1	152,857.6	Generation contributing to northward flow on the Terranora – Mudgeeraba 110 kV lines.			

VRE semi-scheduled curtailment – calendar year 2024							
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
BANGOWF1	Bango 973 Wind Farm	155	2.1	0.9	7,823		
BANGOWF2	Bango 999 Wind Farm	82	2.7	0.8	6,740		
COLEASF1	Coleambally Solar Farm	150	0.9	0.3	2,972		
COLWF01	Collector Wind Farm 1	219	0.9	0.5	4,139		
CROOKWF2	Crookwell 2 Wind Farm	91	2.1	0.3	2,860		
CROOKWF3	Crookwell 3 Wind Farm	56	2.8	0.2	878		
CRURWF1	Crudine Ridge Wind Farm	138	0.6	0.2	1,839		
DARLSF1	Darlington Point Solar Farm	275	4.2	3.0	26,438		
FINLYSF1	Finley Solar Farm	133	6.8	2.2	19,566		
GULLRSF1	Gullen Range Solar Farm	10	0.9	0.0	179		
GULLRWF1	Gullen Range Wind Farm	161	0.8	0.4	3,404		
GULLRWF2	Gullen Range Wind Farm	107	1.2	0.5	3,963		
GUNNING1	Gunning Wind Farm	47	0.7	0.1	1,031		
HILLSTN1	Hillston Sun Farm	85	4.9	1.2	10,944		
JEMALNG1	Jemalong Solar Project	50	4.1	0.6	4,940		
PARSF1	Parkes Solar Farm	50.5	18.7	2.6	22,411		
RYEPARK1	Rye Park Renewable Energy	384	1.0	1.1	9,991		
TARALGA1	Taralga Wind Farm	106	0.1	0.0	250		
WLWLSF1	Walla Walla Solar Farm 1	150	3.7	0.6	1,533		
WLWLSF2	Walla Walla Solar Farm 2	150	3.0	0.3	859		
WOLARSF1	Wollar Solar Farm	280	1.8	0.0	8		
WOODLWN1	Woodlawn Wind Farm	48	0.1	0.0	76		
WSTWYSF1	West Wyalong Solar Farm	90	14.2	3.6	31,251		
WYASF1	Wyalong Solar Farm	53	17.0	2.6	22,697		

DUIDGenerator name(MW)BESS (MW)(MW)BESS (MW)BANGOWF1Bango 973 Wind Farm013200BANGOWF2Bango 999 Wind Farm010300BLOWERNSBlowering300300030003000BUO1Bayswater30030030003000CG1Colongra300300300300COLEASF1Colearbally Solar Farm0300300300COLWF01Collector Wind Farm300300300300CROCWWF2Crookwell 2 Wind Farm168266141253DARLSF1Darlington Point Solar Farm0300300300CRURWF1Gullen Range Wind Farm300300300300GULLRWF1Gullen Range Wind Farm300300300300GULLRWF1Gullen Range Wind Farm300300300300GULLRWF1Gullen Range Wind Farm300300300300GULLRWF2Gullen Range Wind Farm300300300300GULLRWF2Gullen Range Wind Farm300300300300GULLRWF2Gullen Range Wind Farm300300300300GULLRWF2Gullen Range Wind Farm300300300300GULLRWF1Hillston Sun Farm022900MP1Mount Piper300300300300300PASF1<	Historical hosting	capacity indicator for 20% network	spill threshold ⁴²				
BANGOWF2 Bango 999 Wind Farm 0 103 0 0 BLOWERNG Blowering 300 300 201 300 BW01 Bayswater 300 300 300 300 300 CG1 Coleambally Solar Farm 0 300 300 300 300 COLEASF1 Coleambally Solar Farm 0 300 300 300 300 COLWF01 Colector Wind Farm 168 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 300 300 ER01 Eraring 300 300 300 300 300 GULRWF1 Gullen Range Wind Farm 300 300 300 300 300 GULRWF2 Gullen Range Wind Farm 300 300 300 300 300 300 GULRWF1 Gulen Range Wind Farm 300 300 300 300 300 300 300 300 300 300 </th <th>DUID</th> <th>Generator name</th> <th></th> <th></th> <th></th> <th colspan="2">HHCI Solar + BESS (MW)</th>	DUID	Generator name				HHCI Solar + BESS (MW)	
BLOWERNG Blowering 300 300 201 300 BW01 Bayswater 300 300 300 300 300 CG1 Colongra 300 300 300 300 300 COLEASF1 Colearnbally Solar Farm 0 300 300 300 300 COLEASF1 Colearnbally Solar Farm 0 300 300 300 300 COLWF01 Collector Wind Farm 168 266 141 253 DARLSF1 Dartington Point Solar Farm 0 300 300 300 ER01 Eraring 300 300 300 300 300 GULRWF1 Gullen Range Wind Farm 300 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300	BANGOWF1	Bango 973 Wind Farm	0	132	0	0	
BW01 Bayswater 300 300 300 300 CG1 Colongra 300 300 300 300 300 CG1 Coleambally Solar Farm 0 300 300 0 0 COLEASF1 Coleambally Solar Farm 0 300 300 300 300 COLWF01 Collector Wind Farm 300 300 300 300 300 CRORWF2 Crookwell 2 Wind Farm 188 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 300 300 ER01 Eraring 300 300 300 300 300 GULRWF1 Gullen Range Wind Farm 300 300 300 300 300 GULLRWF1 Gullen Range Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 300 300 300 GULRWF2 Gunning Wind Farm 300 300	BANGOWF2	Bango 999 Wind Farm	0	103	0	0	
CG1 Colongra 300 300 300 300 COLEASF1 Coleambally Solar Farm 0 300 0 0 COLWF01 Collector Wind Farm 300 300 300 300 300 CROOKWF2 Crookwell 2 Wind Farm 168 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 300 300 ER01 Eraring 300 300 300 300 300 GULRWF1 Gullen Range Wind Farm 0 207 0 10 GULRWF2 Gullen Range Wind Farm 300 300 300 300 GULRWF1 Gulning Wind Farm 300 300 300 300 300 GULRWF2 Gulen Range Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 RYEPARK1 <td>BLOWERNG</td> <td>Blowering</td> <td>300</td> <td>300</td> <td>201</td> <td>300</td>	BLOWERNG	Blowering	300	300	201	300	
COLEASF1 Coleambally Solar Farm 0 300 0 0 COLWF01 Collector Wind Farm 1 300 300 300 300 300 CROOKWF2 Crookwell 2 Wind Farm 300 300 300 300 300 CRURWF1 Crudine Ridge Wind Farm 168 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 300 300 ER01 Eraring 300 300 300 300 300 GULRWF1 Gulen Range Wind Farm 300 300 300 300 300 GULRWF2 Gulen Range Wind Farm 300 300 300 300 300 GULRWF2 Gulen Range Wind Farm 300 300 300 300 300 GULRWF2 Gulen Range Wind Farm 300 300 300 300 300 GULRWF2 Gulen Range Role Farm 0 229 0 0 0 JEMALNG1 Jernalong Sola	BW01	Bayswater	300	300	300	300	
COLWF01 Collector Wind Farm 1 300 300 300 300 CROOKWF2 Crookwell 2 Wind Farm 300 300 300 300 CRURWF1 Crudine Ridge Wind Farm 168 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 300 300 ER01 Eraring 300 300 300 300 300 GULRWF1 Gullen Range Wind Farm 0 207 0 10 GULRWF2 Gullen Range Wind Farm 300 300 300 300 GULRWF1 Gunning Wind Farm 300 300 300 300 300 GULRWF2 Gullen Range Wind Farm 300 300 300 300 300 GULRWF2 Gunning Wind Farm 300	CG1	Colongra	300	300	300	300	
CROOKWF2 Crookwell 2 Wind Farm 300 300 300 300 CRURWF1 Crudine Ridge Wind Farm 168 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 0 0 ER01 Eraring 300 300 300 300 300 GULRWF1 Gullen Range Wind Farm 0 207 0 10 GULLRWF1 Gullen Range Wind Farm 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 300 GULLRWF2 Gulning Wind Farm 300 300 300 300 300 GULLRWF2 Gulnen Range Wind Farm 300 300 300 300 300 GULRWF3 Gunning Wind Farm 300 300 300 300 300 GULRWF4 Mount Piper 300 300 300 300 300 JEAALNG1 Parkes Solar Farm 0 192	COLEASF1	Coleambally Solar Farm	0	300	0	0	
CRURWF1 Crudine Ridge Wind Farm 168 266 141 253 DARLSF1 Darlington Point Solar Farm 0 300 0 0 ER01 Eraring 300 300 300 300 300 FINLYSF1 Finley Solar Farm 0 207 0 10 GULLRWF1 Gullen Range Wind Farm 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 New England Solar Farm 300 300 300 300 300 NEWENSF2 New England Solar Farm 0 192 0 0 Rye Park Renewable Energy	COLWF01	Collector Wind Farm 1	300	300	300	300	
DARLSF1 Darlington Point Solar Farm 0 300 0 0 ER01 Eraring 300 300 300 300 300 FINLYSF1 Finley Solar Farm 0 207 0 10 GULLRWF1 Gullen Range Wind Farm 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 GUNNING1 Gunning Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 300 NEWENSF2 New England Solar Farm 0 192 0 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 300 300 TALWA1 Taralga Wind Farm 300 300 300 300	CROOKWF2	Crookwell 2 Wind Farm	300	300	300	300	
ER01 Eraring 300 300 300 300 FINLYSF1 Finley Solar Farm 0 207 0 10 GULRWF1 Gullen Range Wind Farm 300 300 300 300 GULRWF2 Gullen Range Wind Farm 300 300 300 300 GULNNING1 Gunning Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 300 NEWENSF2 New England Solar Farm 0 192 0 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 300 300 TALWA1 Talawarra 300 300 300 300 300 300 TUMU3 Lower Tumut 300 300 300 300	CRURWF1	Crudine Ridge Wind Farm	168	266	141	253	
FINLYSF1 Finley Solar Farm 0 207 0 10 GULRWF1 Gulen Range Wind Farm 300	DARLSF1	Darlington Point Solar Farm	0	300	0	0	
GULLRWF1 Gullen Range Wind Farm 300 300 300 300 GULLRWF2 Gullen Range Wind Farm 300 300 300 300 GUNNING1 Gunning Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 NEWENSF2 New England Solar Farm 300 300 300 300 PARSF1 Parkes Solar Farm 0 192 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 ShGEN Shoalhaven 300 300 300 300 300 TALWA1 Talaga Wind Farm 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 UPANQ11	ER01	Eraring	300	300	300	300	
GULLRWF2 Gullen Range Wind Farm 300 300 300 300 GUNNING1 Gunning Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 300 NEWENSF2 New England Solar Farm 300 300 300 300 300 PARSF1 Parkes Solar Farm 0 192 0 0 300 SHGEN Shoalhaven 300 300 300 300 300 TALWA1 Talawarra 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 VP5 Vales Pt 300 300 300 300	FINLYSF1	Finley Solar Farm	0	207	0	10	
GUNNING1 Gunning Wind Farm 300 300 135 267 HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 300 NEWENSF2 New England Solar Farm 300 300 0 300 300 PARSF1 Parkes Solar Farm 0 192 0 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 300 Shoalhaven 300 300 300 300 300 300 TALWA1 Taralga Wind Farm 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 VP5 Vales Pt 300 300 300 <td>GULLRWF1</td> <td>Gullen Range Wind Farm</td> <td>300</td> <td>300</td> <td>300</td> <td>300</td>	GULLRWF1	Gullen Range Wind Farm	300	300	300	300	
HILLSTN1 Hillston Sun Farm 0 300 0 0 JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 NEWENSF2 New England Solar Farm 300 300 0 300 PARSF1 Parkes Solar Farm 0 192 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 Shoalhaven 300 300 300 300 300 300 TALWA1 Talawarra 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 300	GULLRWF2	Gullen Range Wind Farm	300	300	300	300	
JEMALNG1 Jemalong Solar Project 0 229 0 0 MP1 Mount Piper 300 300 300 300 300 NEWENSF2 New England Solar Farm 300 300 0 300 PARSF1 Parkes Solar Farm 0 192 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 ShGEN Shoalhaven 300 300 300 300 300 TALWA1 Tarlaga Wind Farm 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 Woodlawn Wind Farm 300 300 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 <td< td=""><td>GUNNING1</td><td>Gunning Wind Farm</td><td>300</td><td>300</td><td>135</td><td>267</td></td<>	GUNNING1	Gunning Wind Farm	300	300	135	267	
MP1 Mount Piper 300 300 300 300 300 NEWENSF2 New England Solar Farm 300 300 0 300	HILLSTN1	Hillston Sun Farm	0	300	0	0	
NEWENSF2 New England Solar Farm 300 300 0 300 PARSF1 Parkes Solar Farm 0 192 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 ShGEN Shoalhaven 300 300 300 300 300 TALWA1 Tallawarra 300 300 300 300 300 TARALGA1 Taralga Wind Farm 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 0	JEMALNG1	Jemalong Solar Project	0	229	0	0	
PARSF1 Parkes Solar Farm 0 192 0 0 RYEPARK1 Rye Park Renewable Energy 300 300 300 300 300 SHGEN Shoalhaven 300 300 300 300 300 300 TALWA1 Tallawarra 300 300 300 300 300 300 TARALGA1 Taralga Wind Farm 300 30	MP1	Mount Piper	300	300	300	300	
RYEPARK1 Rye Park Renewable Energy 300 300 300 300 SHGEN Shoalhaven 300 300 300 300 300 TALWA1 Tallawarra 300 300 300 300 300 TARALGA1 Taralga Wind Farm 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 Woedlawn Wind Farm 300 300 300 300 300	NEWENSF2	New England Solar Farm	300	300	0	300	
SHGEN Shoalhaven 300 300 300 300 TALWA1 Tallawarra 300 300 300 300 300 TARALGA1 Taralga Wind Farm 300 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 URANQ11 Uranquinty 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 West Wyalong Solar Farm 0 150 0 0	PARSF1	Parkes Solar Farm	0	192	0	0	
TALWA1 Tallawarra 300 300 300 300 TARALGA1 Taralga Wind Farm 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 URANQ11 Uranquinty 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 West Wyalong Solar Farm 0 150 0 0	RYEPARK1	Rye Park Renewable Energy	300	300	300	300	
TARALGA1 Taralga Wind Farm 300 300 300 300 TUMUT3 Lower Tumut 300 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 URANQ11 Uranquinty 300 300 300 300 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 0	SHGEN	Shoalhaven	300	300	300	300	
TUMUT3 Lower Tumut 300 300 300 300 UPPTUMUT Upper Tumut 300 300 300 300 300 URANQ11 Uranquinty 300 300 300 152 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 0 0	TALWA1	Tallawarra	300	300	300	300	
UPPTUMUT Upper Tumut 300 300 300 300 URANQ11 Uranquinty 300 300 152 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 0 0	TARALGA1	Taralga Wind Farm	300	300	300	300	
URANQ11 Uranquinty 300 300 152 300 VP5 Vales Pt 300 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 0	TUMUT3	Lower Tumut	300	300	300	300	
VP5 Vales Pt 300 300 300 300 WOODLWN1 Woodlawn Wind Farm 300 300 300 300 WSTWYSF1 West Wyalong Solar Farm 0 150 0 0	UPPTUMUT	Upper Tumut	300	300	300	300	
WOODLWN1Woodlawn Wind Farm300300300300WSTWYSF1West Wyalong Solar Farm015000	URANQ11	Uranquinty	300	300	152	300	
WSTWYSF1 West Wyalong Solar Farm 0 150 0 0	VP5	Vales Pt	300	300	300	300	
	WOODLWN1	Woodlawn Wind Farm	300	300	300	300	
WYASF1 Wyalong Solar Farm 0 150 0 0	WSTWYSF1	West Wyalong Solar Farm	0	150	0	0	
	WYASF1	Wyalong Solar Farm	0	150	0	0	

⁴² The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.