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CHAPTER 1 - INTRODUCTION 

1.1 National Electricity Forecasting 
AEMO has changed the way it develops and publishes annual electricity demand forecasts for the electricity 
industry, by developing independent forecasts for each region in the National Electricity Market (NEM). 

Electricity demand forecasts are used for operational purposes, for the calculation of marginal loss factors, and as 
a key input into AEMO‘s national transmission planning role. This requires a close understanding of how the 
forecasts are developed to ensure forecasting processes and assumptions are consistently applied and fit for 
purpose.  AEMO is ideally positioned to undertake this task and lead collaboration with the industry to ensure 
representative and reliable forecasts are consistently produced for each region.  

Previously,  AEMO developed demand forecasts for South Australia and Victoria, while the regional transmission 
network service providers (TNSPs) developed forecasts for Queensland, New South Wales (including the 
Australian Capital Territory), and Tasmania. These forecasts were published via a series of AEMO publications 
including the Electricity Statement of Opportunities (ESOO), the Victorian Annual Planning Report (VAPR), and the 
South Australian Supply and Demand Outlook (SASDO).  

National electricity forecasting 

To facilitate greater forecasting transparency and stimulate discussion with the electricity industry, AEMO is now 
publishing the annual electricity demand forecasts via a series of separate information papers and reports: 

• Economic Outlook Information Paper is AEMO’s assessment of the work undertaken by the National 
Institute of Economic and Industry Research (NIEIR), published in May 2012. 

• Rooftop PV Information Paper quantifies the impact of rooftop photovoltaics (PV) on the electricity market, 
published in May 2012. 

• 2011–12 NEM Demand Review Information Paper reviews 2011–12 NEM demand. 

• Forecasting Methodology Information Paper describes the modelling process underpinning the demand 
forecast development. 

• 2012 National Electricity Forecasting Report (NEFR) presents the electricity demand forecasts for the five 
NEM regions. 

Figure 1-1 illustrates the inputs, the modelling and forecast development processes, and the subsequent reports 
underpinning AEMO’s new approach to national electricity forecasting. 

This is first time AEMO has developed forecasts for the NEM, so more work still needs to be done, and AEMO will 
continue to improve the underpinning data, modelling, and interpretation, as well as engaging with industry on an 
ongoing basis to ensure an open and transparent process. 
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Figure 1-1 — AEMO’s National Electricity Forecasting 

 

1.2 Content of paper 
Chapter 1, Introduction, provides the background to AEMO’s National Electricity Forecasting project, the context 
for the remainder of this paper, and possible future work to improve the forecasting process. 

Chapter 2, Measuring and forecasting electricity demand, defines what is being forecast and where these 
forecasts fit in the overall scheme. 

Chapter 3, Modelling non-large industrial consumption, discusses the data and modelling approach for the 
annual energy forecasts. 

Chapter 4, Modelling maximum demand distribution, discusses the modelling of half-hourly demand and the 
simulation of maximum demand probability distributions. 

Chapter 5, Energy modelling example, provides some empirical results using the approach described in Chapter 
3 and based on data for New South Wales. 

Chapter 6, Comparison of forecasting models across regions, describes the energy forecasting models 
developed by AEMO for each region that were actually used to produce the 2012 energy and maximum demand 
forecasts. 

Appendix A, Estimation of long run coefficients and forecasting models, presents estimation output related to 
the example in Chapter 5. 

Appendix B, References, lists the sources used when developing the paper. 
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1.3 Future work 
Modelling and forecasting energy and maximum demand is an evolving process. As well as the choice of model 
type, there are elements of trade-off and judgement involved in assessing alternative model estimations. A number 
of possibly contradictory measures may be employed to gauge how well a model fits the data and the likely 
accuracy and bias of the forecast.  In addition, the chosen model will change with each historical data update and 
associated model re-estimation. 

This paper describes a general approach to modelling regional energy which may not perfectly reflect the particular 
process that was followed to produce AEMO’s 2012 forecasts. This is partly due to the particular nature of the data 
for each region and partly due to the time constraint. AEMO’s 2012 forecasts were produced to a timetable using 
the best approach available at that time. 

A number of aspects of the modelling approach discussed in this publication are already under review, with the aim 
of improving the modelling approach for 2013: 

• Developing the dynamic ordinary least squares (DOLS) approach. 

• Improving measurement of historical retail energy prices. 

• Better measurement of transmission losses and generator auxiliary loads. 

• Refining the data for large industrial loads to segregate a larger number of customers. 

• Further energy segmentation into residential, business and distribution losses. 

• Producing simulated future energy forecasts using different temperature projections, rather than assuming 
mean temperatures. 

• Improving integration of the energy and demand models by allowing for changing load factors in the demand 
models. 

• Refining the half-hourly energy data by developing more accurate half-hourly photovoltaic (PV) series. 

• Integrating all demand components–comprising large industrial loads (LIL), power station auxiliaries (AUX), 
transmission losses (TX), rooftop photovoltaics (PV) and all non-large industrial consumption (NLIC) – to run 
simulations that produce the most accurate overall probability of exceedence (POE) levels of maximum 
demand as generated. 
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CHAPTER 2 - MEASURING AND FORECASTING 
ELECTRICITY DEMAND 

Electricity is consumed as a consequence of millions of individual decisions to utilise various electrical appliances 
at any moment in time. Some of these decisions are investments in new electrical appliances, decommissioning of 
old ones, or changes from electrical appliances to non-electrical appliances (for example a switch from electrical to 
solar water heating). Other decisions are operational, for example turning on a light at night or turning on an air-
conditioner on a hot afternoon. Fortunately, a great many of these decisions represent habitual behaviour which is 
reasonably predictable in aggregate. The core modelling task is therefore to effectively capture the relationship 
between electricity consumption in homes, factories and commercial centres and key economic drivers such as 
population, income, energy prices and the weather. 

The measurement of electricity use in the National Electricity Market (NEM) includes several considerations other 
than bulk, end-use consumption: 

• Large industrial loads that do not respond in the same manner to the bulk consumption drivers. 

• Power station auxiliaries needed to operate coal powered generation. 

• Transmission and distribution network losses, which vary with different generation sources and levels of 
consumer demand. 

At the same time, significant behind-the-meter generation, for example by rooftop PV, appears as a fall in 
consumption. 

2.1 Defining demand 
AEMO’s objective in defining demand is to isolate the underlying use of the bulk of end-use consumers, so it can 
be modelled and forecast. Basic measures of regional energy and demand generally derive from two areas: 

• Generating unit output metered at the generator terminals. 

• Interconnector flows metered at regional boundaries. 

The measures include generating units  registered with AEMO as scheduled or semi-scheduled and all non-
scheduled units for which metered data is available, and generally exclude smaller generating systems, such as 
industrial cogeneration and rooftop PV. 

The basic measures of regional energy and maximum demand have been subdivided by AEMO using 
supplemental data for large industrial loads (LIL), power station auxiliaries (AUX), transmission losses (TX) and 
roof-top photovoltaic generation (PV), which form the components of overall electricity generation load. 

Equation 2-1 — Historical energy and maximum demand 

 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝑨𝑼𝑿 + 𝑻𝑿 + 𝑳𝑰𝑳 − 𝑷𝑽 + 𝑵𝑳𝑰𝑪 

 

In Equation 2-1, NLIC is general mass market sales of electricity plus PV and including distribution losses. It 
therefore represents the underlying demand for electricity as closely as possible, which can be modelled using 
economic drivers. 

In forecasting energy and maximum demand, as well as projecting past trends in non-large industrial consumption, 
several other factors are also considered: 

• The extent to which appliance efficiency will accelerate. 

• The extent to which consumers will switch from using electricity to using other sources of energy. 
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This also accounts for important policy decisions and measures that accelerate increasing trends in energy 
efficiency (EE). 

Equation 2-2 shows the components of forecast energy and maximum demand. 

Equation 2-2 — Forecast energy and maximum demand 

 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 (𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕) = 𝑨𝑼𝑿 + 𝑻𝑿 + 𝑳𝑰𝑳 − 𝑷𝑽 + 𝑵𝑳𝑰𝑪 − 𝑬𝑬 

The forecasting process begins with modelling each of the components on the right hand side of Equation 2-2 for 
each NEM region. 

2.2 Forecasting process overview 
The annual energy and maximum demand forecasts are interconnected, since annual energy forms an average 
level of demand around which half-hourly variations are modelled.  

Figure 2-1 shows an overview of the forecasting process.  

Forecasts for each region are prepared separately, and combined to create the NEM-wide forecasts. 

Figure 2-1 — Forecasting process overview 
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2.2.1 Models for non-large industrial consumption 
Non-large industrial consumption was generally modelled by AEMO as a function of regional income, energy prices 
and weather. The development of the non-large industrial models is described in detail in Chapter 3. 

2.2.2 Half-hourly models and simulations 
Half-hourly models were used to develop simulated maximum demands for both winter and summer by Monash 
University’s Business and Economic Forecasting Unit.1 The model development and simulation process is 
described in detail in Chapter 4. 

2.2.3 Power station auxiliaries (AUX) 
AEMO prepared estimates of future power station auxiliary consumption based on known historical measures and 
assumptions about future power station operations. 

2.2.4 Large industrial loads (LIL) 
The large industrial loads are generally transmission-connected customers, with electricity consumption that varies 
because of major investment or decommissioning decisions and is not weather-sensitive. AEMO developed 
projections of future LIL using a combination of TNSP information and public announcements in the short term, and 
assumptions based on long-term trends in the longer term. 

2.2.5 Rooftop photovoltaic generation (PV) 
Data for installation and self-generation from rooftop PV was collected with the assistance of DNSPs in each 
region. AEMO developed the forecasts based on assumptions about future installed capacity and generation 
models that project historical sunlight exposure. For more information about the collection of historical PV data and 
forecast development, see AEMO’s Rooftop PV Information Paper.2 

2.2.6 Energy efficiency (EE) 
The overall energy efficiency impact of recent initiatives was assessed by AEMO and an average allowance was 
developed for each region for each future year, in terms of replacement generation. For more information about 
specific EE allowances, see the 2012 National Electricity Forecasting Report. 

 

  

 
1 Monash University, available http://www.buseco.monash.edu.au/units/forecasting. Viewed June 2012. 
2 AEMO, available http://www.aemo.com.au/Electricity/Forecasting. Viewed 20 June 2012. 

http://www.buseco.monash.edu.au/units/forecasting
http://www.aemo.com.au/Electricity/Forecasting
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CHAPTER 3 - MODELLING NON-LARGE INDUSTRIAL 
CONSUMPTION 

This chapter describes AEMO’s energy forecasting model development for regional non-large industrial 
consumption (NLIC). NLIC includes mass market electricity sales plus distribution losses plus PV (see Chapter 2). 

A number of basic approaches to electricity forecasting were described in AEMO’s Electricity Forecasting 
Framework Paper. Fiebig (1997) provides a survey of energy modelling techniques, and a range of approaches 
suitable for maximum demand forecasting is described in Contreras (2012). Forecasting models generally vary 
according to the type of forecasts required. Four broad categories of models could be considered, including 
econometric models, computable general equilibrium (CGE) modelling, time series (TS) techniques and neural 
networks (NN). However, AEMO has chosen to develop econometric models for each NEM region due to the 
features of this type of modelling: 

• They are suitable for medium to long-run forecasts of the required timeframe. 

• They can explain the separate contribution to growth of each demand driver. 

Other categories of models either require a high resource investment to establish and maintain, involve difficulty in 
aligning model energy measures with the available data, or are unable to provide intuitive explanations for what 
drives the forecast. 

3.1 Data sources and selection 
AEMO has constructed several demand measures for each NEM region to act as a specific forecasting database. 
Historical and projected demographic, income, production and price data was compiled for AEMO for this modelling 
exercise by the National Institute of Economic and Industry Research (NIEIR), which provided the economic 
scenarios. Weather data was interpolated Bureau of Meteorology records supplied via Telvent. Specific variables 
considered in constructing the regional energy models and their original sources are as follows: 

• Non-large industrial electricity consumption in kWh per capita (AEMO and ABS 3101.0). 

• Real gross state product (GSP) per capita in $/person (ABS 5206.0/ABS 3101.0). 

• Real state final demand (SFD) per capita in $/person (ABS 5206.0/ABS 3101.0). 

• Real average household electricity price inc/kWh (NIEIR/ESAA/ABS 6401.0). 

• Real average price of ‘other household fuels’, index 1989-90=100 (ABS 6401.0). 

• Real standard variable mortgage interest rate, % per annum.3 

• Heating degree days, using region-representative weather stations, daily average temperatures and region-
specific change points, degree Celsius days (Bureau of Meteorology). 

• Cooling degree days, using region-representative weather stations, daily average temperatures and region-
specific change points, degree Celsius days (Bureau of Meteorology). 

• Average air-conditioning ownership, ratio of number in regular use to total number of households.4 

The final variable selection was determined by the best statistical fit for each region. 

 
3 RBA, available http://www.rba.gov.au/statistics/tables/index.html#interest_rates Table F5. Viewed 9 May 2012. 
4 Australian Government, available http://www.energyrating.gov.au/resources/program-publications/?viewPublicationID=1110. Viewed 9 May 

2012. 

http://www.rba.gov.au/statistics/tables/index.html#interest_rates Table F5
http://www.energyrating.gov.au/resources/program-publications/?viewPublicationID=1110
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3.2 Model options 
Electricity demand is generally believed to be determined in the long run by the price of electricity, the price of 
relevant substitute sources of energy and income. In the short run, a lot of seasonal variation is evident in the data, 
which is mainly driven by the weather.5 A traditional static energy model using these drivers was developed, for 
example, in Donnelly and Saddler (1984).  

One deficiency with this approach is that much of the time series data is non-stationary, which can violate the 
assumptions of the ordinary least squares method of selecting best linear unbiased estimates of the coefficients. 
However, methods are available for testing long-run relationships in non-stationary data. In particular, if the data 
can be said to be cointegrated, then the estimated coefficients will converge quickly towards their true values in 
relatively small sample sizes. 

This property of cointegrated variables is known as super-consistency. This is important because AEMO’s data is 
characterised by relatively short samples, given consistent electricity data is only available for all regions since the 
first quarter of 2000. 

Another disadvantage of a traditional static model is that it is not very accommodating to seasonal data. This is 
because the seasonality itself may be partially caused by the effects of past changes in the explanatory variables. 
As a result, AEMO’s models place the true long-run relationships between the variables within a dynamic structure. 

The concept and properties of cointegrating equations permit the long-run relationship to be analysed separately. 
The Engle and Granger (1987) method is one approach to doing this. Engle and Granger propose the estimation of 
a single long-run equation (see Equation 3-1) testing the residuals for cointegration and then using the coefficients 
in an error-correction form including lagged differences of the long-run variables. AEMO has not done this, 
however, due to small sample sizes. 

Alternative approaches include the Johansen vector error-correction (VEC) method and dynamic ordinary least 
squares (DOLS). For more information about methods for determining long-run relationships, see Sections 3.2.1 to 
3.2.4. For more information about selecting the dynamic structure of the energy forecasting equation, see 3.2.5. 

3.2.1 Static demand equation 
Electricity demand, 𝑦𝑡, can be related to a matrix of independent variables, 𝑋𝑡, via a static demand equation (see 
Equation 3-1), where 𝛼 is a constant, 𝛽 is a matrix of coefficient estimates, and 𝑢𝑡 are independently and normally 
distributed residuals. 

Equation 3-1 — Static demand equation 

 𝒚𝒕 = 𝜶 + 𝜷𝑿𝒕 + 𝝁𝒕 

If the variables in Equation 3-1 are non-stationary (in particular if the data are first order integrated) then the Engle-
Granger approach may be invoked, involving testing of the relationship for cointegration by examining the 
residuals. However, in the presence of strong seasonality, this equation may still not produce viable estimates of 
the standard errors and may be unreliable. The absence of dynamics may introduce autocorrelation in the 
residuals, which produces additional bias in the standard errors. 

3.2.2 Auto-regressive distributed lag model 
An alternative representation of Equation 3-1 with dynamics may be termed an auto-regressive distributed lag 
(ARDL) model (see Equation 3-2). Cointegration between 𝑦 and 𝑋 variables may be tested using the bounds 
testing approach of Pesaran Shin and Smith (2001). 

 
5 Some researchers have also emphasised changes in the stock of electrical appliances as a more immediate long-run driver of electricity 

demand. See, for example, Silk and Joutz (1997) who seek to partly explain US retail electricity demand by weighting temperature variables 
with appliance stocks and interest rates (reflecting the propensity to bring forward spending on major appliances and housing). 
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Equation 3-2 — Auto-regressive distributed lag (ARDL) equation 

 𝒚𝒕 = 𝜶 + ∑ 𝝆𝒊𝒚𝒕−𝒊𝒏
𝒊=𝟏 + ∑ 𝝈𝒊𝑿𝒕−𝒊𝒏

𝒊=𝟎 + 𝝁𝒕 

 

While Equation 3-2 may be estimated in a single step, small sample bias remains a significant issue for the 
available data, and the simultaneous estimation of the long-run component with the lag structure could result in 
misspecification of the dynamics.  

3.2.3 Vector error-correction model 
An alternative method of estimating 𝛽 is to use the Johansen (1988) likelihood method, based on a vector error-
correction representation. A general representation, which may consist of several equations determined by the 
number of cointegrated variables, is shown in Equation 3-3 for a two-variable system in 𝑦 and 𝑥, with  𝑛 lagged 
differences. 

In this equation, the terms in brackets represent the lagged residual from the long-run equation, and the terms 𝛿1 
and 𝛿2 determine the speed of adjustment towards the long-run growth path. These terms should be between zero 
and minus one for the system to be stable. In this representation, it is not assumed a priori, either that 𝑦 is 
dependent on 𝑥, or vice versa. In the case of energy demand, however, it is clear that, for example, if 𝑦 is electricity 
demand and 𝑥 is GSP, then it is likely that GSP causes electricity demand but not the other way round. Therefore 
for the purpose of forecasting electricity demand we would select only the single equation in ∆𝑦 and discard the 
other equation. 

Equation 3-3 — Vector error-correction two-equation demand system 

 ∆𝒚𝒕 = 𝜹𝟏(𝒚𝒕−𝟏 − 𝜶𝟏 − 𝜷𝟏𝒙𝒕−𝟏) + ∑ 𝝆𝟏,𝒊∆𝒚𝒕−𝒊𝒏
𝒊=𝟏 + ∑ 𝝈𝒊∆𝒙𝒕−𝒊𝒏

𝒊=𝟏 + 𝝁𝟏,𝒕 

 ∆𝒙𝒕 = 𝜹𝟐(𝒙𝒕−𝟏 − 𝜶𝟐 − 𝜷𝟐𝒚𝒕−𝟏) + ∑ 𝝆𝟐,𝒊∆𝒙𝒕−𝒊𝒏
𝒊=𝟏 + ∑ 𝝈𝟐,𝒊∆𝒚𝒕−𝒊𝒏

𝒊=𝟏 + 𝝁𝟐,𝒕 

 

Any of the single equations in Equation 3-3 may be represented using the Bewley transformation6 by an ARDL 
model, as represented in Equation 3-2. Alternatively, an ARDL may be regarded as an ‘unconstrained’ version of 
one line of Equation 3-3. 

Like the Engle-Granger approach to determining cointegrating relationships, the Johansen method requires pre-
testing of the variables for their order on integration, but it does not suffer from small-sample bias and is applicable 
to situations where there is more than one cointegrating equation. Therefore, to obtain valid results on the 
assumption of one cointegrating relationship, the following conditions are necessary: 

• The cointegrating variables must be prior tested to be integrated of order one, or I(1). 

• Tests for cointegration must reject the hypothesis that there are no cointegrating equations and not reject the 
hypothesis that there is at least one cointegrating equation. 

• The estimated speed of adjustment coefficient 𝛿 must be between zero and minus one. 

• The long run coefficients 𝛽 must have the expected signs. 

• The standard errors associated with estimates of 𝛿 and 𝛽 should be small enough for the coefficients to be 
statistically different from zero. 

 
66 Bewley, R.A. (1979) “The Direct Estimation of the Equilibrium Response in a Linear Dynamic Model”, Economics Letters, 3, 357-361. 
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3.2.4 Dynamic ordinary least squares 
The short-comings of both the Engle-Granger and ARDL models still may not be overcome with the Johansen 
method unless the data conform to all the necessary conditions. However, under these circumstances the 
procedure often referred to as dynamic ordinary least squares (DOLS) is available. 

Saikkonen (1991) suggested DOLS as a way of alleviating the problem of small-sample bias that arises from the 
Engle-Granger procedure for estimating the long-run relationships. 

The first step of DOLS involves estimating the long-run relationship in the presence of the current first-difference of 
the variables, ‘sufficient’ lags of these differences, and (importantly) by adding the leads of these differences, as 
shown in Equation 3-4. 

Testing for cointegration between the 𝑦 and 𝑋 variables is based on the null of no cointegration and the residuals 
from Equation 3-4, following Shin (1994).  

Equation 3-4 — Dynamic ordinary least squares 

 𝒚𝒕 = 𝜶 + 𝜷𝑿 + ∑ 𝝈𝒊∆𝑿𝒕+𝒊𝒏
𝒊=−𝒏 + 𝝁𝒕 

 

Once estimated, the long-run coefficients 𝛽 may be placed within an error-correction structure (as in the second 
step of the Engle-Granger procedure) with the inclusion of contemporaneous independent variables, as set out in 
Equation 3-5. 

This is the second step of the DOLS procedure. The remaining coefficients 𝜌𝑖 and 𝜎𝑖 can be estimated after 
determining the most suitable lag structure. 

Equation 3-5 — Error-correction model with prior estimates of long-run coefficients 

 ∆𝒚𝒕 = 𝜹(𝒚𝒕−𝟏 − 𝜶 − 𝜷𝑿𝒕−𝟏) + ∑ 𝝆𝒊∆𝒚𝒕−𝒊𝒏
𝒊=𝟏 + ∑ 𝝈𝒊∆𝑿𝒕−𝒊𝒏

𝒊=𝟎 + 𝝁𝒕 

 

While Equation 3-5 represents a general form of the energy forecasting equation, a similar form may be estimated 
by one of the methods described in the previous sections (in particular the Johansen method). 

The selection of the best approach for each region is determined by testing the data for each region.  

3.2.5 Lag length selection 
After determining the long-run coefficients for each region’s energy model, the number of lags included in the 
forecasting equations may be determined by starting with the largest practical number of lags (four) and then 
eliminating the longest lagged coefficients for all variables until the lowest Akaike Information Criteria (AIC) or 
Schwartz criteria is achieved.   

3.2.6 Model testing 
Some common diagnostic tests for the forecasting equations are as follows:7 

• The adjusted R2 shows the proportion of energy demand ‘explained’ by the data. 

• The standard error (S.E.) of regression is a measure of the variance of the errors. 

• The equation F-statistic tests the strength of the statistical relationship between the dependent variable and all 
the independent variables jointly (the larger the F-statistic, the stronger the relationship). 

 
7 See Beggs (1988). 
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• The AIC is the distance from the ‘true’ underlying model and may be used to determine model improvements 
such as the correct lag length (smaller is closer to the ‘true’ model). 

• The Durbin-Watson statistic is a measure of first order serial correlation, which is unreliable for equations 
containing lagged dependent variables (a value close to two is indicative of the absence of such serial 
correlation). 

• The Lagrange multiplier (LM) test can be used for higher orders of serial correlation (associated probabilities 
are that serial correlation is not present). 

• The forecast root mean square error (RMSE) measures the accuracy of a forecast, without regard to direction 
(smaller is better). 

• The associated bias proportion is an indication of the persistent tendency of the forecast to depart from the 
actual value in a particular direction (zero would indicate the complete absence of bias). 

3.3 Summary of the energy forecasting approach 
The conceptual energy model chosen by AEMO relates energy to a number of independent long-run drivers, which 
specify a long-run path around which actual energy fluctuates. Estimates of the long-run coefficients on their own 
(the Engle-Granger method) are likely to be biased, both due the limited amount of data available and also due to 
the strong seasonality in the energy data. 

Estimates of the long-run drivers simultaneously with the lagged effects of these drivers and any other short-run 
drivers, such as temperature-related variables (an unconstrained ARDL), may also result in biased estimates of the 
long-run drivers and misspecified dynamics if there is any significant co-linearity between the independent 
variables. 

One way to overcome these problems is to use the Johansen method to estimate a vector error-correction (VEC) 
system and use the estimates of the long-run coefficients from this system to inform a single equation including 
dynamics. However, a number of conditions must be fulfilled to ensure the estimated VEC is valid. 

Dynamic ordinary least squares (DOLS) is an alternative to both the Engle-Granger and the Johansen methods. 
DOLS consists of a relatively unbiased prior estimation of the long-run coefficients, followed by the estimation of a 
single equation containing both the long and short-run variables where the long-run coefficients are constrained to 
their prior values. 

The actual method employed and the form of the resulting forecasting equation for each region is determined by 
results obtained with the actual data. A range of standard statistical tests are also used to inform the fit and 
performance of the final models. For an example of how to proceed, see Chapter 5. 
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CHAPTER 4 - MODELLING MAXIMUM DEMAND 
DISTRIBUTION 

The maximum demand distribution forecasts are prepared by Monash University’s Business and Economic 
Forecasting Unit (for more information, see Hyndman and Fan, 2010). For each region, a semi-parametric model of 
half-hourly demand is developed as a series of daily models relating to each period— 𝑝 (𝑝 = 1, . . . , 48)—of the day. 
The models include daily calendar-dependent and weather effects, as well as quarterly demographic, economic 
and weather effects, where the system of daily equations is separated from the quarterly model. The daily models 
are developed by Monash and the quarterly models (which were also used by AEMO to prepare the energy 
forecasts) were supplied to Monash by AEMO. The models are used together by Monash with simulated 
temperatures and residual re-sampling to predict both historical and future demand distributions. 

4.1 Maximum demand model 
Equation 4-1 demonstrates how the model for each half-hour period can be written. The model is described in 
detail in different publications for each region, for example, Hyndman and Fan (2008a). Large industrial loads, 
transmission network losses and the generator auxiliary loads are subtracted, rooftop PV is added and the 
remaining demand (non-large industrial consumption, equivalent to NLIC in Figure 2-1) is modelled using the driver 
variables. 

Equation 4-1 — Short and long-run demand model 

𝑦𝑡,𝑝 = ℎ𝑝(𝑡) + 𝑓𝑝�𝑤1,𝑡,𝑤2,𝑡� + 𝑔��𝑐𝑗𝑧𝑗,𝑡

𝐽

𝑗=1

� + 𝜇𝑡 

Where: 

• 𝑦𝑡,𝑝 (in logs) denotes half-hourly demand on day t (measured in megawatts). 

• ℎ𝑝(𝑡) models all calendar-dependent effects. 

• 𝑓𝑝�𝑤1,𝑡 ,𝑤2,𝑡� models all temperature effects using two locations within each region. 

• 𝑧𝑗,𝑡 is a quarterly demographic, economic or weather variable at time t and its impact on half-hourly demand is 
measured via the coefficient 𝑐𝑗 (these terms do not depend on the period 𝑝). 

• 𝜇𝑡 denotes the demand which is left unexplained by the model (the model residuals) at time 𝑡. 

Equation 4-2 represents the split in the model between daily effects for each period 𝑝 and long-run quarterly 
effects. 

Equation 4-2 — Normalisation of half-hourly demand 

𝑦𝑡,𝑝 = 𝑦𝑡,𝑝
∗ × 𝑦𝑖 

Where: 

• 𝑦𝑖 is quarterly average demand for quarter 𝑖 in MW (equal to quarterly energy in GWh multiplied by ℎ/1,000 
where ℎ is the number of hours in quarter 𝑖). 

• 𝑦𝑡,𝑝
∗  is the standardized demand for day 𝑡 and period 𝑝. 
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The quarterly model for 𝑦𝑖 = 𝑔�∑ 𝑐𝑗𝑧𝑗,𝑡
𝐽
𝑗=1 � is built by AEMO. Equation 4-2 in effect normalises the daily movements 

in demand for period 𝑝 so that the short-run model is reduced to the form shown in Equation 4-3. The fixed 
relationship between half-hourly demand and average demand, however, means that forecasts generated with 
these models will reflect historical average load factors.8 

Equation 4-3 — Half-hourly demand model 

𝑦𝑡,𝑝
∗ = ℎ𝑝(𝑡) + 𝑓𝑝�𝑤1,𝑡,𝑤2,𝑡� + 𝜇𝑡 

 

For half-hourly demand 𝑦𝑡,𝑝
∗ , the data are modelled by Monash in natural logarithms, as this resulted in the best fit 

to the available data. The model is also easier to interpret as the temperature and calendar variables have a 
multiplicative effect on demand. Some specific features of the model are as follows. 

• Variable selection followed a stage-wise process using groups of input variables to determine the model with 
the lowest mean square error. 

• Calendar effects are modelled using dummy variables and include day-of-week, time-of-year and public 
holidays, including days immediately before and after public holidays. 

• Temperature effects 𝑓𝑝�𝑤1,𝑡 ,𝑤2,𝑡� are modelled using additive regression splines. 

• Temperatures from the last three hours and the same period from the last six days are included, as are the 
maximum and minimum temperature in the last 24 hours and the average temperature in the last seven days. 

• The daily temperature data, using the same locations, was shared by both AEMO and Monash, and the same 
warming trends based on CSIRO, Department of Climate Change and Energy Efficiency, and the Bureau of 
Meteorology (2009) were applied to simulated future temperatures to allow for climate-change impacts. 

The selected model was used to predict historical demand and the residuals were compared to predicted demand. 
From this procedure an evident bias for large demand predictions was subsequently used to adjust forecasts using 
this model. 

4.2 Simulation of maximum demand distribution 
Producing forecasts using the half-hourly demand model requires future values for the temperature variables as 
well as the fixed calendar effects. Temperature is not random but cannot be predicted on a daily basis more than a 
few days into the future. As a result, Monash use a seasonal block re-sampling approach to simulate numerous 
temperature patterns based on historical data. For more information about this re-sampling process, see Hyndman 
and Fan (2008b). 

As well as temperature variations, the model itself involves a random element that does not follow a normal 
distribution pattern when observing only seasonal maximum demands. To capture this random element, Monash 
also re-sample the historical model residuals to simulate numerous small adjustments to the modelled demand 
outcomes. 

The simulation process consists of running the half-hourly model 1,000 times over the same simulation period, 
each time using a different set of simulated temperature inputs and re-sampled model residuals. Each simulation 
contains a particular maximum demand for any particular season, so that any percentile of maximum demand may 
be extracted from all the simulated maximum demands for that season. 

By re-constituting the half-hourly demand with the underlying quarterly average demand (as in Equation 4-2), the 
10%, 50% and 90% probability of exceedence (POE) maximum demand forecasts can be calculated for any future 
demographic and economic scenario. A 10% POE maximum demand forecast has a 1-in-10 chance of being met 

 
8 A new transformation allowing for varying future load factors is under consideration by Monash for future forecasting exercises. 
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or exceeded in any year. A 50% POE forecast has a 50-50 chance of being met or exceeded, and a 90% POE 
forecast has a chance of being met or exceeded in 9 times out of 10. 

The distributions of maximum demand calculated this way derive from measures of non-large industrial 
consumption after removing LIL, AUX and TX, and after adding in rooftop PV. The forecasts include EE. As a 
result, no account was taken in this process of random variability in these elements. However, random variability of 
large industrial loads will be taken into account in future forecasting exercises. 
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CHAPTER 5 - ENERGY MODELLING EXAMPLE 

This Chapter provides an example of the approach AEMO has used to model energy demand by working through 
an example for the New South Wales region (including the Australian Capital Territory). 

5.1 Variable selection and future scenarios 
From the data described in Section 3.1, the variables selected for this exercise are as follows: 

• 𝑦 = non-large industrial electricity consumption in kWh per capita. 

• 𝑖 = real State Final Demand (SFD) per capita in $ per capita. 

• 𝑝 = real average household electricity price in c/kWh 

• ℎ𝑑𝑑 = heating degree days, equal to the sum of the daily differences between the change-point temperature 
and the average temperature below the change-point. 

• 𝑐𝑑𝑑 ∙ (1 + 𝑎𝑐) = cooling degree days, equal to the sum of the daily differences between the average 
temperature and the change-point temperature above the change-point, multiplied by one plus average air-
conditioning ownership, expressed as the ratio of the number of units in regular use to total number of 
households. 

For the demographic and economic variables, future scenarios consistent with AEMO’s high scenario descriptions 
were supplied with the historical data by NIEIR. Future average temperature variables were supplied by Monash 
consistent with CSIRO modelling of future climate warming. 

5.2 Data and data testing 
Figure 5-1 shows the selected data plotted over the period from the quarter ended March 2001 to the quarter 
ended December 2011, and the following observations: 

• The persistent downward trend in energy consumption in New South Wales since 2008, even after adjusting 
for the rise in rooftop PV installation, appears to be primarily driven by price increases (sharp increases in 𝑝 
coincide with the downswing in 𝑦, although there was an initial fall in 𝑖). 

• Strong seasonal movements in 𝑦, while 𝑖 is constructed from seasonally adjusted data. 

• 𝑝 follows a step function because it is based on annual movements only (this may be realistic for the earlier 
periods when the average price was subject to greater tariff regulation but becomes a more restrictive 
assumption as time progresses). 

• The weather variables ℎ𝑑𝑑 and 𝑐𝑑𝑑 ∙ (1 + 𝑎𝑐) have a large variance but no noticeable trend. 

From a basic understanding of electricity demand, a long-run correlation is expected between 𝑦, 𝑖 and 𝑝 with 
causation running from 𝑖 and 𝑝 to 𝑦. That is, a permanent increase in income or decrease in price should 
permanently cause an upward shift in electricity consumption. Weather variables should have strong 
contemporaneous impacts, but the effect of any one quarter of extreme temperatures should not have lasting 
effects on consumption. 
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Figure 5-1 — Variables used in the forecasting model 

 
 
 
Table 5-1 lists the correlation matrix, which shows greater than 10% correlation of the other variables with 𝑦. 
However, 𝑐𝑑𝑑 ∙ (1 + 𝑎𝑐) has the wrong sign and it also appears that 𝑖 and 𝑝 are strongly correlated with each other. 
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Table 5-1 — Correlation matrix 

 y i p hdd cdd*(1+ac) 

ln(y) 1.000 0.133 -0.111 0.784 -0.508 

ln(i) 0.133 1.000 0.812 0.057 0.002 

ln(p) -0.111 0.812 1.000 0.082 -0.001 

hdd 0.784 0.057 0.082 1.000 -0.857 

cdd*(1+ac) -0.508 0.002 -0.001 -0.857 1.000 

 

Unit root tests were conducted on each of the variables individually using an augmented Dickey-Fuller (1979) 
method, using the Schwartz criterion to determine lag length in the test equation, and a maximum of eight lags.  

Table 5-2 shows the results for each variable in both levels and first differences, with a constant but no trend in the 
test equations. 

Table 5-3 shows the results when a linear trend is also included in the test equations. The underlying critical values 
and the probabilities shown in the tables are from MacKinnon (1996). 

Table 5-2 — ADF tests, constant and no trend in test equation 

Variable 
Test 

statistic: 
levels 

Lag length 
(Schwartz) Probability* 

Test 
statistic: 

differences 
Lag length 
(Schwartz) Probability* Conclusion 

ln(y) -0.921 4 0.772 -21.353 2 0.000 I(1) 

ln(i) -1.998 0 0.287 -7.476 0 0.000 I(1) 

ln(p) 0.944 8 0.995 -0.921 7 0.772 I(2) 

hdd -3.165 3 0.029 -6.146 6 0.000 I(0) 

cdd*(1+ac) -2.943 8 0.050 -33.281 2 0.000 I(0) 

 

Table 5-3 — ADF tests, constant and trend in test equation 

Variable 
Test 

statistic: 
levels 

Lag length 
(Schwartz) Probability* 

Test 
statistic: 

differences 
Lag length 
(Schwartz) Probability* Conclusion 

ln(y) 0.129 3 0.997 -23.323 2 0.000 I(1) 

ln(i) -1.441 0 0.835 -7.655 0 0.000 I(1) 

ln(p) -0.312 8 0.988 -2.445 7 0.353 I(2) 

hdd -4.573 6 0.004 -6.158 6 0.000 I(0) 

cdd*(1+ac) -3.462 8 0.058 -32.987 2 0.000 I(0) 

 

Table 5-2 and Table 5-3 show that 𝑦 and 𝑖 are strongly I(1), while 𝑐𝑑𝑑 ∙ (1 + 𝑎𝑐), although I(0) at the 10% level, is 
borderline I(1). This result may be due to the limited amount of data available for testing. Meanwhile, 𝑝 shows up as 
I(2). This result, however, appears to be caused by the large rise towards the end of the test period. Since it is 
unlikely that this series has previously or will in future rise indefinitely at recent rates, it is considered reasonable to 
regard 𝑝 as an I(1) variable. 
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5.3 Long-run estimators  
5.3.1 Engle-Granger process 
An Engle-Granger test for cointegration may be performed after estimation using fully modified ordinary least 
squares (FMOLS) in Eviews (more more information see Table A-1). This estimation method modifies ordinary 
least squares to account for serial correlation effects and for endogeneity in the regressors that result from the 
existence of a cointegrating relationship. 

This procedure was performed using logarithmic values of the long-run variables 𝑦, 𝑖 and 𝑝 and including ℎ𝑑𝑑, 
𝑐𝑑𝑑 ∙ (1 + 𝑎𝑐) and seasonal dummies 𝑠1, 𝑠2 and 𝑠3as deterministic variables (and not part of the cointegrating 
regression). The residuals were then tested for cointegration using the Schwartz criterion (SC) with a maximum lag 
length of nine to determine the lag length in the test equation. 

The long-run coefficient estimates are derived from Table A-1. 

Table 5-4 shows elasticities and. Table 5-5 shows the cointegration tests (tau and z-statistics). 

The associated probabilities firmly reject the hypothesis of no cointegration and so as a final step, the long run 
coefficients may be placed within an error-correction form of forecasting equation. 

Table 5-4 — Engle-Granger long run elasticity estimates 

Variable Elasticity Std. Error t-Statistic Prob.   

Income (i) 0.497 0.0603 8.25 0.000 

Price (p) -0.224 0.0238 -9.41 0.000 

 

Table 5-5 — Engle-Granger cointegration test results 

 Value Prob.a 

Engle-Granger tau-statistic -4.192 0.0292 

Engle-Granger z-statistic -24.78 0.0261 

a. MacKinnon (1996) p-values. 

 

5.3.2 Unconstrained ARDL estimation 
Prior to estimating the unconstrained ARDL, a differenced form of the equation (see Table 5-6) was estimated for 
the purposes of calculating an F-statistic to test redundancy of the levels variables, which was then compared with 
non-standard critical values to test for cointegration. The results are shown in Table 5-7, where upper and lower 
critical bounds are shown at three significance levels for the case where there are four regressors (k=4) with the 
values taken from Table CI(iii) in Pesaran, Shin and Smith (2001). Calculated F-statistics are shown for test 
equations in zero to five lags. The highest critical bound is 5.06 (99% critical level) and the lowest F-statistic is 4.78. 
The calculated values are generally above the critical bounds, providing strong evidence of cointegration.  
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Table 5-6 — F-statistics for cointegrating relationship 

 
90% critical level 95% critical level 99% critical level 

k I(0) I(1) I(0) I(1) I(0) I(1) 

4 2.45 3.52 2.86 4.01 3.74 5.06 

Calculated F-statistics 

ARDL(0) fy(y|i,p,hdd,cd*(1+ac)) = 12.55 

ARDL(1) fy(y|i,p,hdd,cd*(1+ac)) = 13.89 

ARDL(2) fy(y|i,p,hdd,cd*(1+ac)) = 12.22 

ARDL(3) fy(y|i,p,hdd,cd*(1+ac)) = 9.56 

ARDL(4) fy(y|i,p,hdd,cd*(1+ac)) = 4.86 

ARDL(5) fy(y|i,p,hdd,cd*(1+ac)) = 4.78 

  

Table 5-7 lists the long run elasticities derived from the complete estimated forecasting ARDL (for more information 
see Table A-3), where three lags were selected via the process described in Section 5.4. The long-run elasticities 
are slightly higher than the values calculated by the static Engle-Granger method and have relatively high standard 
errors. 

Table 5-7 — Unconstrained ARDL estimation of long-run elasticities 

Variable Elasticity Approximate std. 
error t-Statistic 

Income (i) 0.510 0.339 1.50 

Price (p) -0.284 0.119 -2.39 

 

5.3.3 Johansen procedure 
The Johansen procedure was used to generate vector error-correction systems with a constant but no trend in both 
the cointegrating equations and the error correction terms. Up to five lagged differences were included in the error-
correction terms and some results are shown in Table 5-8 for the equation in ln (𝑦) (unless stated otherwise). 

The following conclusions are based on Table 5-9: 

• The system minimum AIC selects the number of lagged difference terms as five, whereas the Schwartz 
criterion selects zero lags. 

• The number of identified cointegrating equations varies with the number of lags. For the systems with zero, 
one and three lags both the Trace statistic and the maximum Eigen value select one cointegrating equation at 
the 5% probability level. At other lag lengths the number of cointegrating equations is two. 

• The coefficients on the cointegrating equation for the term in ln (𝑦) are not viable (between zero and minus 
one) for the system with four lags. 

• The long-run coefficients for ln(𝑖) and  ln(𝑝) (equal to the long-run elasticities) vary in magnitude and degree of 
significance, but are generally of the expected signs. 

These results signify that the error-correction results based on the system with zero or one lags should be used 
(the three-lag system has an insignificant income coefficient estimate). It was decided to use the no-lag system for 
its lower Schwartz criterion and slightly greater significance for the long-run coefficients (0.472 for income and -
0.219 for price). These values are lower but not too dissimilar to the values estimated previously. 



 FORECASTING METHODOLOGY INFORMATION PAPER 

5-6 Energy modelling example © AEMO 2012 

Table 5-8 — Johansen VEC estimation results 

No. lags 0 1 2 3 4 5 

AIC -16.86 -16.94 -16.75 -17.07 -17.44 -17.49 

Schwartz -15.89 -15.60 -15.04 -15.00 -14.98 -14.63 

Trace 5% 1 1 2 1 2 2 

Eigen 5% 1 1 2 1 2 2 

CointEq -0.828 -0.608 -0.580 -0.186 0.226 -0.459 

Std error 0.12 0.09 0.10 0.04 0.22 0.12 

t-statistic 6.74 6.90 5.93 4.79 1.00 3.78 

ln(i) 0.472 0.439 0.475 0.151 0.723 0.585 

Std error 0.05 0.07 0.07 0.23 0.05 0.11 

t-statistic 9.30 6.31 6.56 0.64 16.02 5.36 

ln(p) -0.219 -0.274 -0.298 -0.444 -0.224 -0.350 

Std error 0.02 0.03 0.03 0.12 0.02 0.05 

t-statistic 9.94 8.53 8.67 3.83 10.74 7.37 

 

5.3.4 DOLS estimation 
DOLS was employed to account for small-sample bias and seasonality in the data and the poor significance levels 
sometimes encountered in the Johansen estimation. As a result, the long-run coefficients in Table 5-9 are likely to 
be the least biased. In this case, the temperature and seasonal variables are included in the error-correction term 
to account for seasonality. The estimated long-run elasticities for income (0.563) and price (-0.241) estimated in 
this fashion are higher in absolute value than the previous estimates. 

Table 5-9 — Long-run coefficients estimated using DOLS 

Variable Coefficient Std. error t-Statistic Prob.   

ln(i) 0.563 0.112 5.05 0.000 

ln(p) -0.241 0.0292 -8.25 0.000 

hdd 0.000298 0.0001 3.82 0.001 

cdd*(1+ac) 0.000186 0.0000 5.83 0.000 

s1 -0.0169 0.0120 -1.42 0.168 

s2 0.0644 0.0152 4.23 0.000 

s3 0.0914 0.0228 4.01 0.000 

 

Section 5.4 details the use of these long-run coefficients and the selection of lag length in the forecasting equation. 
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5.4 Lag length selection 
Each of the long-run coefficients estimated in the previous section from the Engle-Granger, Johansen and DOLS 
approaches may be placed within a dynamic, error-correction forecasting model. The unconstrained ARDL may be 
used as is. A general strategy for selecting the lag length in each forecasting model is as follows: 

a) Construct models with varying lag lengths and examine the AIC and Schwartz criteria for each. The lowest test 
statistic indicates the optimum lag length. It is possible that each criterion may give contradictory results. 

b) For error-correction models, the coefficient on the cointegrating equation should be significantly between zero 
and minus one. If it is not, the model is rejected as it will not perform sensibly. 

c) Check the significance of the coefficients on the longest lagged variables. If none are significant, drop to the 
model with the next shortest lag length. 

This strategy does not allow for general removal of equation terms on the grounds that they fail to exceed some 
significance level. Rather, it is accepted that the lag structure may only be an unbiased influence if it remains intact. 

The following tables show AIC and Schwartz statistics for zero to five lags for each type of model so far discussed. 
The minimum values in each table for each respective test statistic are highlighted in bold. 

Table 5-10 shows that the most efficient lag length for the Engle-Granger model is three. However, none of these 
models with the five alternative lag structures were able to be estimated with a coefficient on the cointegrating 
equation that was significantly between zero and minus one. As a result, the best model that could be adopted 
using this method was the long-run model (for more information, see Appendix 1, Table A-1). 

Table 5-10 — Lag length selection for Engle-Granger OLS model 

Lags 0 1 2 3 4 5 

AIC -5.133 -5.198 -5.161 -5.837 -5.815 -5.702 

Schwarz -4.768 -4.711 -4.553 -5.107 -4.955 -4.709 

 

Table 5-11 shows contradictory results between the two tests for lag length using the unconstrained ARDL model. 
Since the model with zero lags (as chosen by the Schwartz criterion) is effectively the same as the Engle-Granger 
model, the longer lag length as chosen by the AIC was accepted. However, since none of the fourth lags were 
significant in this model, the chosen lag length was actually three (see Table 5-11). 

Table 5-11 — Lag length selection for unconstrained ARDL model 

Lags 0 1 2 3 4 5 

AIC -5.841 -5.835 -5.912 -5.891 -6.213 -6.278 

Schwarz -5.517 -5.389 -5.344 -5.201 -5.402 -5.336 

 

Table 5-12 shows contradictory test results for the choice of lag length for the model derived from a Johansen 
estimation of a VEC. The model with three lags was chosen as providing more information, the third lag being 
significant for at least two variables and the coefficient on the cointegrating equation well-behaved. 

Table 5-12 shows the chosen model. 

Table 5-12 — Lag length selection for Johansen VEC model 

Lags 0 1 2 3 4 5 

AIC -5.923 -5.911 -5.848 -6.192 -6.139 -6.036 

Schwarz -5.558 -5.424 -5.240 -5.462 -5.279 -5.043 
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Table 5-13 shows that the most efficient lag length is four for the DOLS error-correction model (with temperature 
and seasonal variables included in the cointegrating equation). To offset any long-run bias from the seasonal 
variables, lags of the temperature variables are also included in the error-correction model in the form of 
differenced temperature variables. On the evidence of the Akaike criteria, the chosen model was the one with four 
lags (for more information see Table A-7). 

Table 5-13 — Lag length selection for DOLS error-correction model 

Lags 0 1 2 3 4 5 

AIC -6.075 -6.047 -5.982 -6.317 -6.368 -6.366 

Schwarz -5.710 -5.561 -5.374 -5.587 -5.508 -5.373 

5.5 Model testing 
The models so far discussed are represented by ‘FMOLS’ (static model estimated by fully modified least squares), 
‘ARDL3’ (unconstrained ARDL with 3 lags), ‘JEC3’ (Johansen method-derived error correction model with 3 lags), 
‘DOLSEC0’ (DOLS-derived error correction model with zero lags) and ‘DOLSEC4 (DOLS-derived error-correction 
model with four lags). Since many comparable statistical tests are unavailable within Eviews for FMOLS, additional 
results are shown for a similar equation estimated by ordinary least squares (OLS). 

Table 5-14 shows the following: 

• The goodness of fit of each model (R-squared and adjusted R-squared). 

• The joint significance of all coefficients (F-statistic) and the probability that they are all equal to zero. 

• Akaike and Schwartz criteria, used in model selection, where smaller is better. 

• The Durbin-Watson statistic, which is an indication of first-order serial correlation if the value is not close to 
two, but which is unreliable in the presence of lagged dependent variables. 

• Tests of the extent to which the residuals from each model are normal distributed (Jarque-Bera observations 
times R-squared) and the associated probabilities they are normally distributed (the probabilities are high that 
they all are). 

• Breusch-Godfrey lagrange multiplier tests for first order serial correlation and the associated probabilities that 
no serial correlation is present (only the DOLS models pass this test at the 5% significance level). 

• Breusch-Pagan-Godfrey tests for heteroskedasticity and the associated probabilities that it is not present (the 
probabilities are high that it is not). 

• Chow breakpoint tests to examine the likelihood that there was a significant structural change from the June 
quarter 2007 and the associated probabilities of no structural change (the DOLS4 model is the only one that 
strongly rejects the proposal of structural change). 

On the basis of these test results, the DOLSEC4 generally performs best across the range of measures, followed 
by DOLSEC0 and JEC3. 
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Table 5-14 — Statistical test results 

 
OLS FMOLS ARDL3 JEC3 DOLSEC0 DOLSEC4 

R-squared 0.951 0.950 0.969 0.988 0.980 0.992 

Adjusted R-squared 0.942 0.941 0.951 0.981 0.976 0.984 

F-statistic 100.462 - 53.137 128.889 216.064 132.646 

Prob(F-statistic) 0.000 - 0.000 0.000 0.000 0.000 

Akaike info criterion -5.841 - -5.891 -6.192 -6.075 -6.368 

Schwarz criterion -5.517 - -5.201 -5.462 -5.710 -5.5082 

Durbin-Watson stat 1.113 1.155 1.437 1.405 2.012 1.963 

Jarque-Bera obsaR-
squared 2.922 2.520 0.422 1.390 0.099 2.26 

Prob(Jarques-Bera) 0.232 0.284 0.810 0.499 0.952 0.323 

Breusch-Godfrey 
obs*R-squared 8.227 - 5.594 4.980 0.100 0.000 

Prob(Breusch-
Godfrey) 0.004 - 0.018 0.026 0.752 0.990 

Breusch-Pagan-
Godfrey obs*R-
squared 

1.228 - 10.360 16.487 8.986 14.735 

Prob(Breusch-Pagan-
Godfrey) 0.998 - 0.847 0.490 0.344 0.791 

Chow breakpoint F-
statistic 2007(2) 4.397 - 2.684 2.439 3.528 3.561a 

Prob(Chow F-statistic) 0.002 - 0.058 0.100 0.006 0.398a 

a
 Test breakpoint 2006(3) 

Figure 5-2 shows the results of the sum of recursive squared residuals (cusum-squared) tests, which are prepared 
by repeated estimation of each model using larger and larger data samples. Movement outside the 5% significance 
lines is indicative of the model’s structural instability (meaning it may be especially unreliable for forecasting the 
future). This figure shows that each of the error-correction models (JEC3 and DOLSEC4 in particular) are more 
structurally stable than the static model or the unconstrained ARDL. 
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Figure 5-2 — Cusum squared tests 

 

 

Table 5-15 shows the in-sample forecasting performance of each model. The lowest error measures (RMSE, MAE 
and MAPE) are attached to the DOLSEC4 model. Meanwhile the bias proportions are relatively low with the 
exception of the Johansen EC3 model. This appears to be caused by the failure to properly account for seasonal 
variables in the cointegrating equation. 

Table 5-15 — Within-sample forecasts 

Forecast sample: 2001Q1 
2011Q4 OLS FMOLS ARDL3 JEC3 DOLSEC0 DOLSEC4 

Root Mean Squared Error 28.211 22.874 19.280 18.445 22.646 17.112 

Mean Absolute Error      22.001 18.212 15.823 14.606 18.027 13.389 

Mean Absolute Percentage 
Error 1.061 0.877 0.762 0.699 0.868 0.639 

Theil Inequality Coefficient  0.007 0.006 0.005 0.004 0.005 0.004 

     Bias Proportion         0.000 0.001 0.000 0.005 0.0010 0.002 

     Variance Proportion  0.014 0.002 0.011 0.051 0.007 0.048 

     Covariance Proportion  0.986 0.997 0.989 0.944 0.992 0.950 
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5.6 Forecasting 
Each of the static OLS, unconstrained ARDL, Johansen EC3 and DOLSEC4 models is used to predict quarterly 
non-large industrial consumption per head of population in kWh/capita to June 2032. This requires using a scenario 
for future income and price growth and average temperature trends. These measures are then converted to 
absolute GWh using a projection of population, and a moving sum is applied to generate annual energy quantities. 

Figure 5-3 shows the results. 

Figure 5-3 — Annual non-large industrial consumption forecasts  

  

 

As anticipated, the ARDL performs differently from the other models, which is believed to be due to biased long-run 
coefficients and inappropriate dynamics. Meanwhile, the lack of dynamics in the static equation and the failure to 
properly account for seasonality in the Johansen model result in lower forecasts in the long run, compared to the 
model estimated by DOLS and eliminating the seasonal impact on the long-run coefficient estimates. Based on the 
reasoning that the DOLS procedure should produce the least biased long-run coefficient estimates, plus the 
performance displayed in Section 5.5, the DOLSEC4 forecasts should be the most reliable, subject to the 
underlying population and economic forecasts. 
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CHAPTER 6 - COMPARISON OF REGIONAL 
FORECASTING MODELS 

This chapter describes the models developed by AEMO to produce 2012 non-large industrial consumption 
forecasts and compares the differences between these models for each of the five NEM regions.  

Table 6-1 shows that estimated long-run elasticities are significantly different from region to region. Therefore, a 
similar change in either real income or electricity price can have quite a varied effect on demand in different 
regions. There are two likely explanations for this: 

• The modelled non-large industrial consumption for each region captures different proportions of residential 
versus non-residential customer loads. 

• Residential customers in different regions have varying heating load requirements, which results in larger 
average bills (and therefore a greater response to income and/or price shocks) where the heating load is 
greater. 

Table 6-1 — Estimated own price and income elasticities 

 New South Wales Victoria Queensland South Australia Tasmania 

Income 0.62 0.34 0.26 0.34 0.68 

(Standard error) (0.069) (0.047) (0.041) (0.045) (0.40) 

Price -0.29 -0.14 -0.18 -0.25 -0.69 

(Standard error) (0.032) (0.085) (0.025) (0.037) (0.15) 

 

All models also include contemporaneous and transitory weather impacts on electricity consumption, as well as 
some lagged income and price effects (and generally suggest that electricity consumption adjusts gradually to any 
given income or price shock): 

• The Queensland model also includes the significant negative effects of interest rates and the 2010/11 floods. 

• The Tasmanian model also includes the significant positive effect of alternative heating fuel prices. 

6.1 New South Wales (including the Australian Capital 
Territory) 

The model adopted by AEMO to produce the 2012 New South Wales non-large industrial consumption forecast 
was based on a modified version of the VEC estimation in Table A-4 and Table A-5 and discussed in Section 5.3.3.  

The model uses the first, third and fourth lags of the differenced dynamic terms, both the VEC to estimate the long-
run coefficients and also in the forecasting equation. The adopted model is shown in Equation 6-1 and for the 
following reasons, a VEC approach was used: 

• The alternative OLS and ARDL models were found to be inadequate in the absence of dynamics and in the 
recognition of possible small sample bias. 

• In order to obtain a valid VEC model, various options for the inclusion of constant and deterministic trend 
terms and the number of lags required some compromise and balance. 

• A valid model was produced to a timetable that did not allow for further experimentation with DOLS. 
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Equation 6-1 — New South Wales non-large industrial consumption forecasting model 

𝑑(ln(𝑦𝑡) = −0.53[ln(𝑦𝑡−1) − 0.62 ln(𝑖𝑡−1) + 0.29 ln(𝑝𝑡−1) − 2.25] 

−0.28𝑑(ln (𝑦𝑡−1) − 0.05𝑑(ln (𝑦𝑡−3) − 0.08𝑑(ln(𝑦𝑡−4)) 

+0.21𝑑(ln(𝑖𝑡−1) + 0.03𝑑(ln (𝑖𝑡−3) − 0.23𝑑(ln(𝑖𝑡−4)) 

+0.15𝑑(ln (𝑝𝑡−1) − 0.26𝑑(ln (𝑝𝑡−3) − 0.26𝑑(ln(𝑝𝑡−4) 

+0.0003ℎ𝑑𝑑𝑡 + 0.0002𝑐𝑑𝑑𝑡(1 + 𝑎𝑐𝑡) 

+0.0004𝑠1,𝑡 + 0.11𝑠2,𝑡 + 0.10𝑠3,𝑡 

 

The adopted approach produces long run coefficients that are higher in absolute magnitude than those derived 
from Table A-4 and Table A-5 but which are within two standard errors of the alternative estimates produced by 
DOLS and shown in Table A-6. The forecasts produced with the adopted model are similar in the long run, but 
lower than in the short run, to the DOLS model forecast shown in Figure 5-3. 

Interpreting the model produces the following observations about the first term (in square brackets) in the long run: 

• Per capita consumption has a fixed component (2.25 kWh per person) and an own price elasticity of -0.29, 
implying that the long-run response to a 1% increase in electricity price is a 0.29% decrease in electricity 
consumption. 

• Per capita consumption has an income elasticity of +0.62, meaning that the long-run response to an increase 
in state final demand per capita of 1%, is a 0.62% increase in electricity consumption (this estimated sensitivity 
to income in New South Wales is generally higher than for other mainland regions). 

The transition to the long-run growth path following any short-run shock takes place at the rate of 53% each quarter 
(this is derived from the first coefficient in the model, and is known as the ‘speed of adjustment’). 

The remainder of the model produces the following observations in the short run: 

• Lagged differences in consumption, price and income continue to have temporary effects. 

• Heating degree days (which determine the heating load) and cooling degree days (which determine the 
cooling load) along with air-conditioning ownership have contemporaneous 9 impacts on electricity 
consumption. 

• Quarterly seasonal dummy variables correct for residual seasonality. 

6.2 Queensland 
The model adopted by AEMO to produce the 2012 Queensland non-large industrial consumption forecast was 
developed as an ARDL with insignificant terms removed and is shown in Equation 6-2. This model was adopted for 
the following reasons: 

• The alternative OLS model was found to be inadequate in the absence of dynamics and in the recognition of 
possible small sample bias. 

• It was not possible to meet all the constraints required to produce a valid model using the Johansen method to 
estimate a VEC. 

• A valid model was produced to a timetable that did not allow for further experimentation with DOLS. 

 
9 Heating and cooling have separate effects on energy, but these effects are only felt at the time of each heating or cooling event. 
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Equation 6-2 — Queensland non-large industrial consumption forecasting model 

ln(𝑦𝑡) = 5.53 + 0.26 ln(𝑖𝑡) − 0.18 ln(𝑝𝑡−3) − 0.03 ln(𝑟𝑡−1) 

+0.00035𝑐𝑑𝑑𝑡 − 0.008𝑤 − 0.012𝑠1,𝑡 + 0.012𝑠2,𝑡 + 0.021𝑠3,𝑡 

 

Where 𝑟 is the real standard variable mortgage interest rate and 𝑤 is a dummy variable for the Queensland floods 
in 2010–11, equal to one in the December quarter 2010, and in March and June quarters 2011, and zero at other 
times. 

Interpreting the model produces the following observations:  

• Per capita consumption has a fixed component (5.53 kWh per person). 

• The own price elasticity is -0.18 (with a three-quarter lag), implying that the long run response to a 1% 
increase in electricity price is an 0.18% decrease in electricity consumption (the relatively low price elasticity in 
Queensland may reflect relatively low residential electricity bills due to minimal heating loads). 

• The income elasticity is +0.26, meaning that the long run response to an increase in gross state product per 
capita of 1%, is a 0.26% increase in electricity consumption. 

• The real interest rate has a small negative effect on electricity consumption in the long run. 

• The extensive floods had a significant negative but transitory effect on Queensland electricity consumption. 

• Heating degree days (which determine the heating load) are not significant but cooling degree days (which 
determine the cooling load) have contemporaneous impacts on electricity consumption. 

• Quarterly seasonal dummy variables correct for residual seasonality. 

6.3 South Australia 
The model adopted by AEMO to produce the 2012 South Australian non-large industrial consumption forecast was 
based on VEC estimation. The model uses the first and second lags of the differenced dynamic terms and is shown 
in Equation 6-3. This approach was undertaken for the following reasons: 

• The alternative OLS and ARDL models were found to be inadequate in the absence of dynamics and in the 
recognition of possible small sample bias 

• A valid VEC model was available 

• The model was produced to a timetable that did not allow for further experimentation with DOLS. 

The underlying non-large industrial consumption, however, was first stripped of the residential electric hot water 
load, as this is being phased out by the South Australian Government and would distort underlying consumption 
patterns. 

Equation 6-3 — South Australian non-large industrial consumption forecasting model 

𝑑(ln(𝑦𝑡) = −0.82[ln(𝑦𝑡−1) − 0.34 ln(𝑖𝑡−1) + 0.25 ln(𝑝𝑡−1) − 7.10] 

−0.12𝑑(ln (𝑦𝑡−1) − 0.09𝑑(ln (𝑦𝑡−2) 

+0.13𝑑(ln(𝑖𝑡−1) + 0.08𝑑(ln (𝑖𝑡−2) 

+0.13𝑑(ln(𝑝𝑡−1) + 0.03𝑑(ln (𝑝𝑡−2) 

+0.0004ℎ𝑑𝑑𝑡 + 0.0005𝑐𝑑𝑑𝑡 

+0.007𝑠1,𝑡 + 0.04𝑠2,𝑡 + 0.07𝑠3,𝑡 

 

Interpreting the model produces the following observations about the first term (in square brackets) in the long run: 
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• Per capita consumption has an own price elasticity of -0.25, implying that the long-run response to a 1% 
increase in electricity price is a 0.25% decrease in electricity consumption. 

• Per capita consumption has an income elasticity of +0.34, meaning that the long-run response to an increase 
in state final demand per capita of 1%, is a 0.34% increase in electricity consumption. 

The transition to the long-run growth path following any short run shock takes place at the rate of 82% each quarter 
(this is derived from the first coefficient in the model, and is known as the ‘speed of adjustment’). 

The remainder of the model produces the following observations in the short run: 

• Lagged differences in consumption, price and income continue to have temporary effects. 

• Heating degree days (which determine the heating load) and cooling degree days (which determine the 
cooling load) along with air-conditioning ownership have contemporaneous10 impacts on electricity 
consumption. 

• Quarterly seasonal dummy variables correct for residual seasonality. 

6.4 Tasmania 
The model adopted by AEMO to produce the 2012 Tasmanian non-large industrial consumption forecast was 
based on VEC estimation. The model uses the first lags of the differenced dynamic terms and is shown in Equation 
6-4. This approach was undertaken for the following reasons: 

• The alternative OLS and ARDL models were found to be inadequate in the absence of dynamics and in the 
recognition of possible small sample bias. 

• A valid VEC model was available. 

• The model was produced to a timetable that did not allow for further experimentation with DOLS. 

Equation 6-4 — Tasmanian non-large industrial consumption forecasting model 

𝑑(ln(𝑦𝑡) = −0.58[ln(𝑦𝑡−1) − 0.68 ln(𝑖𝑡−1) + 0.69 ln(𝑝𝑡−1) − 0.13 ln(𝑔𝑡−1) − 2.85] 

−0.17𝑑(ln (𝑦𝑡−1) + 0.24𝑑(ln(𝑖𝑡−1) + 0.21𝑑(ln(𝑝𝑡−1) + 0.13𝑑(ln (𝑔𝑡−1) 

+0.0004ℎ𝑑𝑑𝑡 

+0.005𝑠1,𝑡 + 0.16𝑠2,𝑡 + 0.16𝑠3,𝑡 

 

Where 𝑔 is the ABS index of gas and other household fuels, representing the cost of alternative energy sources 
(e.g. firewood, kerosene and gas, particularly for residential space heating). 

Interpreting the model produces the following observations about the first term (in square brackets) in the long run: 

• Per capita consumption has an own price elasticity of -0.69, implying that the long-run response to a 1% 
increase in electricity price is a 0.69% decrease in electricity consumption.  

• Per capita consumption has an income elasticity of +0.68, meaning that the long-run response to an increase 
in state final demand per capita of 1%, is a 0.68% increase in electricity consumption. 

The relatively high estimated sensitivity to both price and income for Tasmania, compared to other regions, is likely 
due to the non-large industrial consumption in Tasmania, which includes a relatively higher proportion of residential 
load. 

 
10 See note 9. 
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The transition to the long-run growth path following any short-run shock takes place at the rate of 58% each quarter 
(this is derived from the first coefficient in the model, and is known as the ‘speed of adjustment’). 

The remainder of the model produces the following observations in the short run: 

• Lagged differences in consumption, electricity and alternative fuel prices and income continue to have 
temporary effects. 

• Heating degree days (which determine the heating load) have contemporaneous impacts on electricity 
consumption. 

• Quarterly seasonal dummy variables correct for residual seasonality. 

6.5 Victoria 
The model adopted by AEMO to produce the 2012 Victorian non-large industrial consumption forecast was 
developed as an ARDL with insignificant terms removed and is shown in Equation 6-5. This model was adopted for 
the following reasons: 

• The alternative OLS model was found to be inadequate in the absence of dynamics and in the recognition of 
possible small sample bias. 

• It was not possible to meet all the constraints required to produce a valid model using the Johansen method to 
estimate a VEC. 

• A valid model was produced to a timetable that did not allow for further experimentation with DOLS. 

Equation 6-5 — Victorian non-large industrial consumption forecasting model 

ln(𝑦𝑡) = 4.54 + 0.34 ln(𝑖𝑡) − 0.04 ln(𝑝𝑡) − 0.05 ln(𝑝𝑡−2) − 0.04 6ln(𝑝𝑡−3) − 0.096 ln(𝑝𝑡−4) 

+0.00032ℎ𝑑𝑑𝑡 + 0.00037𝑐𝑑𝑑𝑡 − 0.0026𝑠1,𝑡 + 0.023𝑠2,𝑡 + 0.03𝑠3,𝑡 

 

Interpreting the model produces the following observations: 

• Per capita consumption has a fixed component (4.54 kWh per person). 

• The own price elasticity is -0.14 (sum of -0.04,-0.05,+0.046 and -0.096), implying that the long-run response to 
a 1% increase in electricity price is a 0.14% decrease in electricity consumption (the relatively low price 
elasticity may be due to the fact that average residential electricity bills in Victoria do not traditionally include a 
large space heating component). 

• The income elasticity is +0.34, meaning that the long-run response to an increase in gross state product per 
capita of 1%, is a 0.34% increase in electricity consumption. 

• Heating degree days (which determine the heating load) and cooling degree days (which determine the 
cooling load) both have the same impact on electricity consumption. 

• Quarterly seasonal dummy variables correct for residual seasonality.  



 FORECASTING METHODOLOGY INFORMATION PAPER 

6-6 Comparison of regional forecasting models © AEMO 2012 

[This page is left blank intentionally] 
 
 

 
 



 

© AEMO 2012 Estimation of long run coefficients and forecasting models A-1 

APPENDIX A - ESTIMATION OF LONG RUN 
COEFFICIENTS AND FORECASTING MODELS 

This appendix presents a summary of the EViews estimation of the models discussed in Chapter 5.  

Table A-1 lists the static estimation of long-run coefficients using fully modified least squares (FMOLS). 

Table A-1 — Static estimation of long-run coefficients using FMOLS 

Dependent Variable: LOG(Y)   
Method: Fully Modified Least Squares (FMOLS)  
Date: 20/06/12   Time: 12:06   
Sample: 2001Q1 2011Q4   
Included observations: 44   
Cointegrating equation deterministics: C HDD CDD*(1+AC) S1 S2 S3  
Long-run covariance estimate (Bartlett kernel, Newey-West fixed bandwidth 
        = 4.0000)   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LOG(I) 0.496912 0.060258 8.246430 0.0000 

LOG(P) -0.224475 0.023848 -9.412846 0.0000 
C 3.387764 0.521782 6.492687 0.0000 

HDD 0.000337 0.000102 3.287453 0.0023 
CDD*(1+AC) 0.000230 4.60E-05 5.010350 0.0000 

S1 -0.030046 0.014368 -2.091182 0.0436 
S2 0.059055 0.019034 3.102650 0.0037 
S3 0.089893 0.029272 3.070985 0.0040 

     
     R-squared 0.950404     Mean dependent var 7.635542 

Adjusted R-squared 0.940760     S.D. dependent var 0.049851 
S.E. of regression 0.012133     Sum squared resid 0.005300 
Durbin-Watson stat 1.154658     Long-run variance 0.000256 
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Table A-2 lists the ARDL bounds test equation using 4 lags. 

Table A-2 — ARDL bounds test equation 

Dependent Variable: DLOG(Y)   
Method: Least Squares   
Date: 27/06/12   Time: 17:14   
Sample (adjusted): 2001Q2 2011Q4  
Included observations: 43 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LOG(Y(-1)) -0.144061 0.247968 -0.580969 0.5705 

LOG(I(-1)) 0.029264 0.145970 0.200479 0.8440 
LOG(P(-1)) -0.082403 0.054160 -1.521467 0.1504 

DLOG(Y(-1)) -0.221157 0.371041 -0.596044 0.5607 
DLOG(Y(-2)) -0.277997 0.287192 -0.967985 0.3495 
DLOG(Y(-3)) -0.391302 0.284372 -1.376021 0.1904 
DLOG(Y(-4)) -0.383530 0.274327 -1.398076 0.1838 
DLOG(I(-1)) 0.157065 0.438283 0.358366 0.7254 
DLOG(I(-2)) -0.040358 0.316655 -0.127451 0.9004 
DLOG(I(-3)) 0.363258 0.263646 1.377822 0.1899 
DLOG(I(-4)) 0.021786 0.275366 0.079117 0.9381 
DLOG(P(-1)) 0.240217 0.144859 1.658278 0.1195 
DLOG(P(-2)) 0.014109 0.129007 0.109368 0.9145 
DLOG(P(-3)) -0.161385 0.118620 -1.360515 0.1952 
DLOG(P(-4)) 0.053672 0.148345 0.361803 0.7229 

C 0.864637 0.905121 0.955273 0.3556 
HDD 0.000333 0.000111 3.009820 0.0094 

D(HDD(-1)) -0.000112 0.000128 -0.876771 0.3954 
D(HDD(-2)) 4.79E-05 0.000122 0.392906 0.7003 
D(HDD(-3)) 8.34E-05 0.000135 0.619603 0.5455 
D(HDD(-4)) 5.14E-05 0.000129 0.397577 0.6969 

CDD*(1+AC) 0.000165 4.52E-05 3.657802 0.0026 
D(CDD(-1)*(1+AC(-1))) -0.000113 5.60E-05 -2.017142 0.0633 
D(CDD(-2)*(1+AC(-2))) -1.55E-05 6.25E-05 -0.248456 0.8074 
D(CDD(-3)*(1+AC(-3))) -3.07E-05 6.35E-05 -0.482824 0.6367 
D(CDD(-4)*(1+AC(-4))) 4.94E-05 6.95E-05 0.711095 0.4887 

S1 0.061864 0.068864 0.898354 0.3842 
S2 0.204235 0.089515 2.281563 0.0387 
S3 0.111566 0.078279 1.425232 0.1760 

     
     R-squared 0.990835     Mean dependent var -0.001123 

Adjusted R-squared 0.972505     S.D. dependent var 0.068624 
S.E. of regression 0.011379     Akaike info criterion -5.887397 
Sum squared resid 0.001813     Schwarz criterion -4.699611 
Log likelihood 155.5790     Hannan-Quinn criter. -5.449378 
F-statistic 54.05537     Durbin-Watson stat 2.255212 
Prob(F-statistic) 0.000000    
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Table A-3 lists the dynamic estimation of long-run coefficients using an unconstrained ARDL with 3 lags. 

Table A-3 — Dynamic estimation of long-run coefficients using ARDL 

Dependent Variable: LOG(Y)   
Method: Least Squares   
Date: 20/06/12   Time: 12:06   
Sample: 2001Q1 2011Q4   
Included observations: 44   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LOG(I) 0.679763 0.269257 2.524587 0.0178 

LOG(P) -0.138426 0.089530 -1.546133 0.1337 
LOG(Y(-1)) 0.176523 0.135731 1.300537 0.2044 
LOG(Y(-2)) 0.165566 0.137028 1.208265 0.2374 
LOG(Y(-3)) 0.047357 0.139342 0.339860 0.7366 
LOG(I(-1)) -0.461666 0.367153 -1.257420 0.2194 
LOG(I(-2)) -0.086787 0.307411 -0.282315 0.7799 
LOG(I(-3)) 0.180015 0.226812 0.793676 0.4343 
LOG(P(-1)) 0.137228 0.107993 1.270718 0.2147 
LOG(P(-2)) -0.046571 0.115344 -0.403753 0.6896 
LOG(P(-3)) -0.125855 0.097219 -1.294552 0.2064 

C 2.036614 0.648369 3.141132 0.0041 
HDD 0.000330 8.30E-05 3.977191 0.0005 

CDD*(1+AC) 0.000187 3.76E-05 4.968708 0.0000 
S1 -0.005085 0.026779 -0.189888 0.8508 
S2 0.075812 0.023720 3.196166 0.0035 
S3 0.100564 0.024753 4.062740 0.0004 

     
     R-squared 0.969220     Mean dependent var 7.635542 

Adjusted R-squared 0.950980     S.D. dependent var 0.049851 
S.E. of regression 0.011037     Akaike info criterion -5.890702 
Sum squared resid 0.003289     Schwarz criterion -5.201356 
Log likelihood 146.5955     Hannan-Quinn criter. -5.635060 
F-statistic 53.13705     Durbin-Watson stat 1.436988 
Prob(F-statistic) 0.000000    

     
     

 

Note: 

𝐿𝑜𝑛𝑔 𝑟𝑢𝑛 𝑖𝑛𝑐𝑜𝑚𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
∑ 𝑐𝑜𝑒𝑓�ln�𝑖𝑗��−3
𝑗=0

1 −∑ 𝑐𝑜𝑒𝑓�ln�𝑦𝑗��−3
𝑗=−1

 

 
             = 0.510 
 

𝐿𝑜𝑛𝑔 𝑟𝑢𝑛 𝑝𝑟𝑖𝑐𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
∑ 𝑐𝑜𝑒𝑓�ln�𝑝𝑗��−3
𝑗=0

1 − ∑ 𝑐𝑜𝑒𝑓�ln�𝑦𝑗��−3
𝑗=−1

 

 
             = -0.284 
 

where 𝑐𝑜𝑒𝑓is for the coefficient value on the respective variable. 
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Table A-4 lists the Johansen estimation of long-run coefficients using vector error correction (VEC) estimates with 0 
lags. 

Table A-4 — Johansen estimation of long-run coefficients using VEC 

 Vector Error Correction Estimates  
 Date: 20/06/12   Time: 12:06  
 Sample: 2001Q1 2011Q4  
 Included observations: 44  
 Standard errors in ( ) & t-statistics in [ ] 

    
    Cointegrating Eq:  CointEq1   
    
    LOG(Y(-1))  1.000000   
    

LOG(I(-1)) -0.471754   
  (0.05073)   
 [-9.29984]   
    

LOG(P(-1))  0.218824   
  (0.02201)   
 [ 9.94366]   
    

C -3.742478   
    
    Error Correction: D(LOG(Y)) D(LOG(I)) D(LOG(P)) 
    
    CointEq1 -0.827804 -0.157084 -0.226940 
  (0.12285)  (0.07449)  (0.24079) 
 [-6.73853] [-2.10888] [-0.94248] 
    

C -0.126877  0.018454  0.009197 
  (0.01374)  (0.00833)  (0.02693) 
 [-9.23369] [ 2.21500] [ 0.34146] 
    

HDD  0.000289 -4.63E-05 -0.000144 
  (8.6E-05)  (5.2E-05)  (0.00017) 
 [ 3.37001] [-0.89246] [-0.85925] 
    

CDD*(1+AC)  0.000200  3.96E-06  3.26E-05 
  (3.8E-05)  (2.3E-05)  (7.5E-05) 
 [ 5.22824] [ 0.17094] [ 0.43634] 
    

S1 -0.006497 -0.027810 -0.038915 
  (0.01955)  (0.01185)  (0.03832) 
 [-0.33234] [-2.34614] [-1.01559] 
    

S2  0.074064 -0.004976  0.009388 
  (0.01954)  (0.01185)  (0.03831) 
 [ 3.78976] [-0.41991] [ 0.24507] 
    

S3  0.092131  0.000234  0.085211 
  (0.02651)  (0.01607)  (0.05195) 
 [ 3.47595] [ 0.01458] [ 1.64017] 
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Table A-4 — (continued) 

    
     R-squared  0.967039  0.284274  0.488445 

 Adj. R-squared  0.961694  0.168210  0.405491 
 Sum sq. resids  0.006538  0.002404  0.025120 
 S.E. equation  0.013293  0.008060  0.026056 
 F-statistic  180.9235  2.449294  5.888092 
 Log likelihood  131.4805  153.4941  101.8689 
 Akaike AIC -5.658204 -6.658822 -4.312221 
 Schwarz SC -5.374355 -6.374974 -4.028373 
 Mean dependent -0.000571  0.005421  0.012950 
 S.D. dependent  0.067920  0.008838  0.033793 

    
     Determinant resid covariance (dof adj.)  5.39E-12  

 Determinant resid covariance  3.20E-12  
 Log likelihood  394.9735  
 Akaike information criterion -16.86243  
 Schwarz criterion -15.88924  
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Table A-5 lists the error-correction model based on Johansen estimation. 

Table A-5 — Error-correction model based on Johansen estimation 

Dependent Variable: D(LOG(Y))   
Method: Least Squares   
Date: 20/06/12   Time: 12:06   
Sample: 2001Q1 2011Q4   
Included observations: 44   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LOG(Y(-1))-0.471754248516397*LOG(I(-

1))+0.218824112106252*LOG(P(-1))-
3.74247775239477 -0.478347 0.143476 -3.333996 0.0026 

D(LOG(Y(-1))) -0.227861 0.130208 -1.749976 0.0919 
D(LOG(Y(-2))) -0.044519 0.123146 -0.361513 0.7206 
D(LOG(Y(-3))) -0.223948 0.111741 -2.004162 0.0556 

D(LOG(I)) 0.858592 0.215495 3.984271 0.0005 
D(LOG(I(-1))) -0.313469 0.182874 -1.714126 0.0984 
D(LOG(I(-2))) -0.098873 0.179775 -0.549980 0.5870 
D(LOG(I(-3))) 0.193370 0.182554 1.059251 0.2992 

D(LOG(P)) -0.223753 0.070330 -3.181490 0.0038 
D(LOG(P(-1))) 0.113996 0.072643 1.569265 0.1287 
D(LOG(P(-2))) -8.37E-05 0.083524 -0.001002 0.9992 
D(LOG(P(-3))) -0.283875 0.077142 -3.679892 0.0011 

C -0.136158 0.013134 -10.36707 0.0000 
HDD 0.000323 6.96E-05 4.634692 0.0001 

CDD*(1+AC) 0.000180 3.21E-05 5.603280 0.0000 
S1 0.016011 0.023278 0.687830 0.4977 
S2 0.103896 0.021831 4.759106 0.0001 
S3 0.083423 0.024594 3.391999 0.0022 

     
     R-squared 0.988273     Mean dependent var -0.000571 

Adjusted R-squared 0.980605     S.D. dependent var 0.067920 
S.E. of regression 0.009459     Akaike info criterion -6.191638 
Sum squared resid 0.002326     Schwarz criterion -5.461742 
Log likelihood 154.2160     Hannan-Quinn criter. -5.920957 
F-statistic 128.8892     Durbin-Watson stat 1.405343 
Prob(F-statistic) 0.000000    
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Table A-6 lists the dynamic estimation of long-run coefficients using DOLS. 

Table A-6 — Dynamic estimation of long-run coefficients using DOLS 

Dependent Variable: LOG(Y)   
Method: Least Squares   
Date: 20/06/12   Time: 14:42   
Sample: 2001Q1 2011Q4   
Included observations: 44   
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 
        bandwidth = 4.0000)   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 2.812899 1.000582 2.811263 0.0093 

LOG(I) 0.563376 0.111666 5.045189 0.0000 
LOG(P) -0.240764 0.029189 -8.248597 0.0000 

HDD 0.000298 7.79E-05 3.819426 0.0007 
CDD*(1+AC) 0.000186 3.19E-05 5.834230 0.0000 

S1 -0.016930 0.011951 -1.416630 0.1685 
S2 0.064364 0.015223 4.228016 0.0003 
S3 0.091415 0.022782 4.012527 0.0005 

DLOG(I) 0.200189 0.220408 0.908261 0.3721 
DLOG(I(1)) 0.104997 0.332807 0.315489 0.7549 
DLOG(I(2)) -0.032448 0.443050 -0.073238 0.9422 
DLOG(I(-1)) -0.307588 0.228026 -1.348920 0.1890 
DLOG(I(-2)) -0.395397 0.191756 -2.061977 0.0493 

DLOG(P) -0.016760 0.088944 -0.188431 0.8520 
DLOG(P(1)) -0.189794 0.097775 -1.941139 0.0632 
DLOG(P(2)) -0.045586 0.073258 -0.622257 0.5392 
DLOG(P(-1)) 0.091629 0.114584 0.799669 0.4311 
DLOG(P(-2)) 0.120689 0.066254 1.821608 0.0800 

     
     R-squared 0.968723     Mean dependent var 7.635542 

Adjusted R-squared 0.948273     S.D. dependent var 0.049851 
S.E. of regression 0.011338     Akaike info criterion -5.829232 
Sum squared resid 0.003342     Schwarz criterion -5.099336 
Log likelihood 146.2431     Hannan-Quinn criter. -5.558551 
F-statistic 47.36959     Durbin-Watson stat 1.064394 
Prob(F-statistic) 0.000000    
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Table A-7 lists the estimated DOLS error-correction model. 

Table A-7 — DOLS(4) error-correction model 

Dependent Variable: DLOG(Y)   
Method: Least Squares   
Date: 20/06/12   Time: 15:32   
Sample (adjusted): 2001Q2 2011Q4  
Included observations: 43 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LOG(Y(-1))-2.81289891646884-

0.563375862630925*LOG(I(-
1))+0.240764251645576*LOG(P(-1))-

0.000297596096994404*HDD(-1)-
0.000186361716348683*CDD(-1)*(1+AC(-

1))+0.0169300508828203*S1(-1)-
0.0643639379360083*S2(-1)-
0.0914149290664382*S3(-1) -0.493421 0.178715 -2.760937 0.0114 

DLOG(Y(-1)) 0.064900 0.123189 0.526830 0.6036 
DLOG(Y(-2)) 0.193469 0.110291 1.754164 0.0933 
DLOG(Y(-3)) -0.149774 0.116437 -1.286306 0.2117 
DLOG(Y(-4)) 0.171350 0.119605 1.432629 0.1660 

DLOG(I) 0.848012 0.210852 4.021839 0.0006 
DLOG(I(-1)) -0.396563 0.248161 -1.598004 0.1243 
DLOG(I(-2)) -0.046840 0.190142 -0.246342 0.8077 
DLOG(I(-3)) 0.149499 0.178636 0.836890 0.4117 
DLOG(I(-4)) -0.315134 0.184044 -1.712275 0.1009 

DLOG(P) -0.261711 0.077283 -3.386381 0.0027 
DLOG(P(-1)) 0.217810 0.070849 3.074293 0.0055 
DLOG(P(-2)) -0.014496 0.072754 -0.199240 0.8439 
DLOG(P(-3)) -0.242097 0.073789 -3.280954 0.0034 
DLOG(P(-4)) 0.133712 0.079383 1.684375 0.1062 

C -0.074114 0.017674 -4.193322 0.0004 
D(HDD) 0.000308 4.95E-05 6.223774 0.0000 

D(CDD*(1+AC)) 0.000155 2.38E-05 6.509108 0.0000 
S1 0.063569 0.022093 2.877287 0.0087 
S2 0.159339 0.032282 4.935784 0.0001 
S3 0.067352 0.027112 2.484240 0.0211 

     
     R-squared 0.991775     Mean dependent var -0.001123 

Adjusted R-squared 0.984299     S.D. dependent var 0.068624 
S.E. of regression 0.008599     Akaike info criterion -6.367762 
Sum squared resid 0.001627     Schwarz criterion -5.507641 
Log likelihood 157.9069     Hannan-Quinn criter. -6.050576 
F-statistic 132.6464     Durbin-Watson stat 1.963394 
Prob(F-statistic) 0.000000    
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