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Disclaimer 
This publication has been prepared by the Australian Energy Market Operator Limited (AEMO) as part of a series 
of information papers about the development of AEMO’s demand forecasts for the National Electricity Market for 
2012-13 onwards, to be used for AEMO’s planning and operational functions under the National Electricity Rules. 

This publication may contain data provided by or collected from third parties, and conclusions, opinions, 
assumptions or forecasts that are based on that data. AEMO does not warrant or represent that the information in 
this publication (including statements, opinions, forecasts and third party data) is accurate, complete or current, or 
that it may be relied on for any particular purpose. 

Anyone proposing to rely on or use any information in this publication should independently verify and check its 
accuracy, completeness, reliability and suitability for purpose, and should obtain independent and specific advice 
from appropriate experts.  

To the maximum extent permitted by law, neither AEMO, nor any of AEMO’s advisers, consultants or other 
contributors to this publication (or their respective associated companies, businesses, partners, directors, officers 
or employees) shall have any liability (however arising) for any information or other matter contained in or derived 
from, or for any omission from, this publication, or for a person’s use of or reliance on that information. 
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provided appropriate acknowledgement of the source is published as well. 
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ABOUT THIS INFORMATION PAPER 

The 2013 Forecasting Methodology Information Paper is a companion document to the 2013 National Electricity 
Forecasting Report (NEFR). It is designed to assist in interpreting the electricity demand forecasts contained  
in the NEFR.  

This paper provides a detailed description of how the 2013 annual energy and maximum demand forecasts were 
developed. It outlines how AEMO sought to ensure the forecasting processes and assumptions were consistently 
applied and fit for purpose. It details the modelling improvements made to the forecasts compared to the 2012 
report, following detailed analysis.   

In addition to explaining the methodology behind the demand forecasts, this paper provides further detail on the 
electricity demand segments featured in the 2013 NEFR and the approaches used to develop the forecasts for 
each forecasting component.  

Key improvements include:  

• The inclusion of the short-term focus (one-to-five-years) in the annual energy models.  

• The inclusion of weather adjustments and allowing for the expected use of appliances at peak times in 
maximum demand models. 

• A direct approach to gathering operational data from large industrial customers and transmission network 
service providers (TNSPs) or distribution network service providers (DNSPs) in developing large industrial 
load forecasts.  

• Inclusion of additional data for historical estimates and payback periods as the basis for installed capacity 
forecasts for rooftop photovoltaic (PV) uptake.  

• Increased transparency of the forecast approach and results, with the inclusion of Commonwealth 
Government initiatives and building standards for energy efficiency offsets.  

• A revised methodology for the development of forecasts for existing and possible future small non-
scheduled generation plant.  

The modelling and forecasting methodology processes for each component have been endorsed and approved by 
both AEMO’s subject matter experts and external reviewers. Reviewers include AEMO’s advisor Woodhall 
Investment Research, and independent peer reviewer, Frontier Economics.
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CHAPTER 1 - INTRODUCTION 

1.1 National electricity forecasting 
In 2012, AEMO changed the way it develops and publishes annual electricity demand forecasts for the electricity 
industry, by developing independent forecasts for each region in the National Electricity Market (NEM). In 2013, 
AEMO has made further improvements to this process.  

Electricity demand forecasts are used for operational purposes, for the calculation of marginal loss factors, and as 
a key input into AEMO’s national transmission planning role.  

This requires a close understanding of how the forecasts are developed to ensure forecasting processes and 
assumptions are consistently applied and fit for purpose.   

AEMO is leading collaboration with the industry to ensure representative and reliable forecasts are consistently 
produced for each region.  

This report outlines the methodology used in the annual energy and maximum demand forecasting process. 

Table 1-1 shows how the 2013 NEFR scenarios relate to the 2012 AEMO scenarios and the other related 
scenarios detailed in this paper. 

Table 1-1 — 2013 NEFR scenario mapping 

2013 NEFR 
reference 

2012 AEMO 
scenario 

Related 
economic 
scenario 

Related large 
industrial 
scenario 

Related rooftop 
PV scenario 

Related energy 
efficiency 
scenario 

Related small 
non-scheduled 

generation 
scenario 

High  
Scenario 2 - 
Fast World 
Recovery 

HCO5a High Moderate 
Uptake 

Moderate 
Uptake High Uptake 

Medium  Scenario 3 - 
Planning MCO5b Medium Moderate 

Uptake 
Moderate 
Uptake Moderate Uptake 

Low  Scenario 6 - 
Slow Growth LCO5c Low Moderate 

Uptake 
Moderate 
Uptake Slow Uptake 

a High economic growth scenario, assuming carbon emissions reduction of 5% by 2020. 
b Medium economic growth scenario, assuming carbon emissions reduction of 5% by 2020. 
c Low economic growth scenario, assuming carbon emissions reduction of 5% by 2020. 

1.2 Content of paper 
Chapter 1, Introduction, provides the background to AEMO’s national electricity forecasts, the context for this 
methodology paper. 

Chapter 2, Residential and commercial load, the methodology used to develop annual energy and maximum 
demand forecasts for residential and commercial load.  

Chapter 3, Large industrial load, provides the methodology used to develop annual energy and maximum 
demand forecasts for large industrial load. 

Chapter 4, Rooftop PV, provides the methodology used to develop annual energy and maximum demand 
forecasts for rooftop PV output. 

Chapter 5, Energy efficiency, provides the methodology used to develop annual energy and maximum demand 
offset forecasts for energy efficiency measures. 
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Chapter 6, Small non-scheduled generation, provides the methodology used to develop annual energy and 
maximum demand forecasts for small non-scheduled generation. 

Chapter 7, provides the methodology used to develop the demand-side participation forecasts. 

Appendix A, Input data, changes and estimated components, provides information about the systems from 
which AEMO extracts data used as NEFR inputs, and details any changes to historical data used. 

Appendix B, Rooftop photovoltaic forecast, specifies the forecast rooftop photovoltaic (PV) uptake scenarios 
based on the methodology described in Chapter 4. 

Appendix C, Energy efficiency forecast, specifies the forecast energy efficiency uptake scenarios based on the 
methodology described in Chapter 5. 

Appendix D, Demand-side participation forecast, presents the forecast values for demand-side participation 
(DSP) based on the methodology presented in Chapter 7. 

Appendix E, Generators included in the 2013 NEFR, identifies the scheduled, semi-scheduled and small non-
scheduled power stations for each region that contribute to develop both operational and annual energy demand 
forecasts. 
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CHAPTER 2 - RESIDENTIAL AND COMMERCIAL LOAD 

The residential and commercial annual energy load used in the 2013 NEFR forecasts is calculated by taking non-
large industrial consumption1, and subtracting rooftop photovoltaic (PV) contribution and energy efficiency savings 
as post-model adjustments.  

This chapter provides the methodology used to develop annual energy and maximum demand forecasts for the 
residential and commercial sector. 

To model residential and commercial maximum demand, transmission losses, auxiliary load and estimates of 
rooftop PV contribution are added to residential and commercial load. Similar to the annual energy forecasts, for 
maximum demand forecasts energy efficiency savings and future estimates of rooftop PV contribution are 
subtracted as post-model adjustments.  

2.1 Annual energy 
This section provides the methodology used to develop annual energy forecast models for residential and 
commercial. These are developed using econometric methods, which relate historical quarterly electricity 
consumption to a number of key drivers.  

AEMO’s models typically use real electricity prices, real state income, heating and cooling degree days, and 
seasonal dummy variables as inputs. The models produce quarterly electricity consumption forecasts, which are 
then aggregated to derive annual forecasts.  

AEMO engaged Woodhall Investment Research Pty Ltd to assist in developing the annual energy models. Frontier 
Economics also independently peer reviewed the models and AEMO’s forecasting methodology.  

An overview of the annual energy forecast methodology used in the 2013 NEFR is shown in Figure 2-1. 

 
1      Non-large industrial consumption can be derived by subtracting rooftop PV and energy efficiency values. These can be found in the regional 

Excel work books http://aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-2013. 
2  This is a time series where the population mean, variance, and covariances change over time, so it is characterised by its non-constant mean 

and variance and not having the property of mean reversion. 
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Figure 2-1 — Annual energy forecasts diagram 

 

2.1.1 Annual energy models 
Long term, electricity demand is determined by the price of electricity and the price of relevant substitute sources of 
energy and state income. Short term seasonal demand variation is driven mainly by weather. AEMO chose to 
develop econometric models for each National Electricity Market (NEM) region for the following reasons: 

• The key drivers of residential and commercial energy consumption are the economic and  
demographic variables. 

• Econometric models are suitable for medium- to long-run forecasts. 

• Econometric models can explain the separate contribution of each demand driver to energy consumption. 

 
The annual energy models were constructed on a quarterly basis, commencing September, December, March and 
June. These were then aggregated to come up with the annual energy consumption relating to a particular  
financial year.  

The models relate historical non-large industrial energy consumption trends to a number of independent long-run 
drivers (such as state income and electricity prices). This produces a long-run forecast path around which actual 
demand fluctuates.  
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However, due to the non-stationary2 property of the time series data used in the annual energy model, traditional 
static models cannot be used as this can violate the assumptions of the Ordinary Least Squares (OLS) method of 
selecting the best linear unbiased estimates of the coefficients. But methods are available for estimating long-run 
relationships in non-stationary data which have been adopted by AEMO. 

A solution to this problem is to transform the time series by differencing it so that it becomes stationary. If taking the 
first difference of a non-stationary time series can achieve stationarity, then the time series is integrated to order 1 
or I(1).3  

If two non-stationary time series of the same order are integrated and there is a linear combination of the two time 
series that is stationary, then the two time series are said to be cointegrated and a long-run relationship between 
the variables can be estimated.4 Cointegration is especially important as AEMO’s dataset is relatively short.5 

In the 2012 NEFR, AEMO found that the economic variables used to model energy consumption were non-
stationary, so forecast models based on cointegration were developed. While these models were based on well-
established cointegrating methods that have been empirically used for estimating the long-run relationship between 
non-stationary variables, they require large data sets. As a result, AEMO moved away from this approach in the 
2013 NEFR. (For information on the models developed for the 2012 NEFR, see the 2012 Forecasting Methodology 
Information Paper.6)  

Dynamic Ordinary Least Squares  
To enable a valid and consistent approach to be applied across all NEM regions, AEMO adopted the Dynamic 
Ordinary Least Squares (DOLS) estimator proposed by Saikkonen (1991) across all NEM regions.  
 
The DOLS method is known to be effective when working with small datasets and where endogeneity may be 
present. (These were two issues evident in the 2012 NEFR methodology).The DOLS method provides an efficient 
estimator for the long-run relationship in the presence of variables with differing and higher orders of integration. 
And if a Newey-West correction7 is applied, it is reasonable to apply standard tests on the coefficients. 
 
The DOLS methodology adopted by AEMO involves estimating the cointegrating long-run equation and 
augmenting it with sufficient leads and lags of the first differences of the explanatory variables to correct small 
sample bias and endogeniety. The specification of the DOLS equation is shown in Equation 2-1.  

Equation 2-1 — Dynamic Ordinary Least Squares 

𝑦𝑡 =  c0  + 𝑐1𝑥𝑡 + � 𝑐𝑖2∆𝑥𝑡+𝑖

𝑛

𝑖=−𝑛

+ 𝑢𝑡 

 
Once this is estimated, an Error Correction (EC) term calculated from the residuals from the DOLS equation can be 
placed in a dynamic equation known as an Error Correction Model (ECM) along with the contemporaneous 
independent variables. The specification of this model is shown in Equation 2-2. 
 

 
2  This is a time series where the population mean, variance, and covariances change over time, so it is characterised by its non-constant mean 

and variance and not having the property of mean reversion. 
3  A times series that must be differenced d times to achieve stationarity is called integrated to order d or I(d). 
4  If the data is cointegrated then the estimated coefficients will converge quickly towards their true values. This property of cointegration is known 

as super-consistency.  
5  With consistent electricity data available since the first quarter of 2000 and from the first quarter of 2002 for Tasmania.  
6  AEMO. Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report 

2012/~/media/Files/Other/forecasting/Forecasting_Methodology_Information_Paper_v2.ashx. 
7  A Newey-West correction is used to correct autocorrelation in the standard errors of a regression model and is generally used for time series 

data where the standard assumption of regression analysis does not apply.      
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Equation 2-2 — Error Correction Model with long-run estimates 

∆𝑦𝑡  =  δ(𝑦𝑡−1 − 𝑐𝑜  +  𝑐1𝑥𝑡−1) + �𝛼𝑖∆𝑦𝑡−𝑖

𝑛

𝑖=1

+ �𝛽𝑖∆𝑥𝑡−𝑖

𝑛

𝑖=0

+ 𝑢𝑡 

 
The coefficient δ represents the speed of adjustment to the long-run path and the remaining coefficients 𝛼𝑖  and 𝛽𝑖 
can be estimated after determining the most suitable lag structure.8      
 

Data sources and variable selection 
AEMO constructed an historical database of demand data at the half-hourly level for each NEM region. This 
includes large industrial demand, auxiliary loads, transmission losses and residential and commercial demand from 
January 2000 onwards for all regions. It also includes weather data at the half-hourly level for various locations 
across the NEM; this was sourced from a commercial weather provider. 

Historical and projected demographic and economic data, including income and price data, was prepared for 
AEMO by the National Institute of Economic and Industry Research (NIEIR) and used as a key input in the 
modelling. 

AEMO considered the following specific variables when constructing the annual energy models (the original data 
source is included in brackets): 
 
• Energy consumption data (AEMO). 

• Population (NIEIR). 

• Real gross state product (GSP) per capita (NIEIR). 

• Real state final demand (SFD) per capita (NIEIR). 

• Real total price of electricity (TPE) c/kWh (NIEIR). 

• Real residential electricity prices (RPE) c/kWh (NIEIR). 

• Real business electricity price (BPE) c/kWh (NIEIR). 

• Real residential gas price (RGP) index (NIEIR). 

• Real business gas price (BGP) index (NIEIR). 

• Real total gas price (TGP) index (NIEIR). 

• Real average price of other household fuels index (NIEIR). 

• Real standard variable mortgage interest rate (SVR) % per annum (NIEIR). 

• Heating degree days (HDD), using region-representative weather stations (BOM). 

• Cooling degree days (CDD), using regions representative weather stations (BOM).      
 
AEMO attempted to use the same variables across all regions; however, this was ineffective as some variable 
combinations produced unrealistic model outputs. Accordingly, AEMO relied on a statistical approach in deciding 
which variables to use in each model. This involved examining the fit and statistical significance of each variable 
when placed in the model, and assessing the modelling output.  
 
Selecting the best variable for each region was determined by testing the data. Consideration was also given to the 
theoretical relationship between energy demand and a range of drivers so that the estimated coefficients made 
theoretical sense. For example, the coefficients for each variable should show that energy demand is likely to: 
 

 
8  For a quarterly time series, the first difference would equal the difference between the current value and the value from the previous quarter and 

each successive lag would represent the value from the previous quarter.  
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• Increase with real state-wide income. 

• Decrease with rising electricity prices relative to the general price level. 

• Be highly seasonal due to varying weather throughout the year.  
 
AEMO applied a general statistical approach by testing combinations of variables in different model specifications 
and selecting variables which provided the best explanation of energy consumption. Stability diagnostic 
assessments were also used to assess the stability of the coefficients and model specification.9   
 
The final variables and model specification was determined through AEMO’s assessment of the statistical 
significance and the intuitiveness of the coefficients estimated for each variable, and by assessing the results of the 
diagnostics applied for each model. 
 
The price and income variables show positive trends, which suggest non-stationarity. The variables used are 
region-specific with either gross state product (GSP) or state final demand (SFD) used to represent state income, 
real average retail electricity prices10, real average gas prices and other heating fuels, real standard variable 
mortgage rates, heating and cooling degree days, and seasonal dummies. All relevant variables were deflated by 
CPI with the exception of demand, which is measured in kWh. 

Table 2-1 — Final variable selection  

Variable Unit NSW QLD VIC SA TAS 

Electricity 
Demand kWh/capita 

Y = 
1000*energy/ 

population 

Y = 
1000*energy/ 

population 

Y = 
1000*energy/ 

population 

Y = 
1000*energy/ 

population 

Y = 
1000*energy/ 

population 

Income $/capita I = 1000*SFD/ 
population 

I = 1000*GSP/ 
population 

I = 1000*GSP/ 
population 

I = 1000*SFD/ 
population 

I = 1000*SFD/ 
population 

Electricity Price c/kWh P = TPE P = TPE P = TPE P = RPE P = TPE 

Temperature Degree days 

Cooling degree 
days 

Cooling degree 
days 

Cooling degree 
days 

Cooling degree 
days  

Heating degree 
days  Heating degree 

days 
Heating degree 

days 
Heating degree 

days 
 

Total price of electricity (TPE) was found to best explain price effects in demand consumption for New South 
Wales, Queensland, Victoria and Tasmania. For South Australia, residential price of electricity (RPE) was the best 
explanatory variable for price in explaining the effects of electricity prices on energy consumption.  

SFD was used to represent the income variable in New South Wales, South Australia and Tasmania, while GSP 
was found to best explain income in Victoria and Queensland.  
 
Cooling degree and heating degree days were both found to be significant for New South Wales, Victoria and 
South Australia. Heating degree days were not significant for Queensland and cooling degree days were not 
significant for Tasmania.11 
 
Variables such as the standard variable mortgage rate and the price of substitute electricity sources (such as gas) 
and other household fuels were considered; however, these were found to be statistically insignificant in explaining 

 
9  Typical stability diagnostic assessments used by AEMO include CUSUM tests, recursive coefficients estimates and assessment of the residuals 

produced from each equation. All tests were conducted in Eviews statistical software package.   
10  Total electricity price is a weighted average of residential and business electricity prices. It does not include the prices for large industrial users 

as these are negotiated privately between the user and the service provider.  
11  This is because there are few heating degree days for Queensland and few cooling degree days for Tasmania. 
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energy consumption or their estimated long run coefficients were unrealistic once entered into the long-run 
equation. 

Electricity demand, income, and price variables were all entered into the model in natural logarithms; this made 
interpreting the model coefficients simpler and reduced the statistical influence of outlying data points.   

2.1.2 Modelling approach 
The main variables (energy demand, income and price) were first tested for non-stationarity using the Augmented 
Dickey-Fuller (ADF) test with the null hypothesis that the variable has a unit root or is non-stationary.12  
 
Given that there is a possible trend in the data, an ADF test with a constant trend was developed using the Eviews 
statistical software package. Table 2-2 shows the results for each NEM region.  
 

Table 2-2 — ADF tests, constant with linear trend 

Variable 

NSW QLD VIC SA TAS 

Test 
Statistic P-value Test 

Statistic P-value Test 
Statistic P-value Test 

Statistic P-value Test 
Statistic P-value 

ln(y)a 0.29 1.00 -1.45 0.83 0.46 1.00 -3.00 0.14 -1.83 0.67 

ln(i)b -1.45 0.84 -2.71 0.24 -2.43 0.42 -2.94 0.15 -3.21 0.09 

ln(p)c -2.79 0.20 -3.25 0.08 -2.50 0.33 -1.28 0.89 -1.97 0.61 
a: Natural logarithm of energy consumption. 
b: Natural logarithm of income. 
c: Natural logarithm of electricity price. 
 
The results from Table 2-2 confirm that the main variables are all non-stationary at the 10% level of significance for 
each region. There are limitations with traditional unit root tests on small samples, as one or two abnormal 
observations could make it difficult to determine the correct order of integration. However, these results do provide 
some assurance that the data is non-stationary.   

AEMO used formal tests to check for cointegration and estimate a long-run equation13; however, as these are not 
overly reliable (especially for small samples), AEMO also used alternative methods to validate that the variables 
were non-stationary, and that the residuals estimated from the cointegrating equation were stationary. This was 
done by considering the variables and the resulting residuals estimated from the DOLS.  

The inspection showed that the two variables (price and income) are time trending, indicating a strong positive 
trend for each of the variables in all NEM regions. This suggests that the variables used for each region are most 
likely non-stationary. On this basis, AEMO assessed that the variables used in the forecast models may be 
cointegrated, indicating a long-run relationship between price and income which can be used to forecast energy 
consumption.  

To establish the existence of a long-run relationship between the variables, AEMO adopted the following approach: 

1. Estimate a DOLS equation and estimate the residuals from the equation.  
2. Visually inspect the residuals to determine if they are stationary. A long-run relationship can only exist if 

the residuals are stationary.  

 
12  All variables were tested in natural logarithm form. 
13  An Engle-Granger Single Equation Cointegration Test and a Johansen System Cointegration Test can be performed in Eviews to test for 

cointegrating relationships.  
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Long-run estimator 
AEMO applied a cointegrating equation similar to Equation 2-1 to determine the long-run relationship of energy 
consumption for each NEM region.  

Eviews was used to estimate the DOLS equation with income and price variables entering the equation as the 
cointegrating regressors. A constant was also included while the temperature and seasonal dummy variables were 
entered into the equation as deterministic regressors or covariates. 

AEMO determined the order of leads and lags of the differenced variables by assessing the stability of the 
coefficients under different leads and lags structures in the DOLS. The inclusion of sufficient leads and lags was 
required to alleviate small sample bias and endogeneity. This meant a trade-off also had to be made, as including 
leads and lags necessitates truncating the existing data, which reduces the degrees of freedom. As such, AEMO 
considered a maximum of two leads and two lags as acceptable given the small sample.14  

While there was no formal method to choose the order of leads and lags in DOLS, AEMO’s preferred approach was 
to apply a fixed rule choosing a maximum number of leads and lags, and observe the change in the coefficients by 
progressively changing the number of leads and lags in the equation. The aim is to find an order where the 
coefficients remained stable when the leads and lags are changed.  

AEMO applied the following procedure: 

1. Start with one lag in the DOLS. 
2. Progressively add leads and lags to the specification and assess the stability of the coefficients. 
3. Where the coefficients fluctuate by changing the leads and lags, continue to progressively add leads and 

lags to the equation until the coefficients remain stable. 

Where the coefficients remained relatively stable by changing from one lag to two lags (or one lead) then having 
one lag was sufficient to achieve stable coefficients. Stability diagnostic tests such as CUSUM tests, recursive 
coefficients estimates and assessment of the residuals produced from each DOLS equation were also used to 
assess the stability of the long-run coefficients once a specification for the DOLS was chosen. 

In most cases, one lag or one lag and one lead was found to be sufficient in providing stable coefficients in most 
regions.  

All regional DOLS models include contemporaneous weather impacts on consumption as well as quarterly 
seasonal dummy variables to account for seasonality. Table 2-3 shows the long-run elasticities for income and 
price estimated using DOLS.   

Table 2-3 — Estimated long-run income and price elasticities  

 NSW QLD VIC SA TAS 

Income 0.37 0.23 0.31 0.31 0.71 

(Standard Error) -0.06 -0.08 0.03 0.05 0.12 

Price -0.21 -0.16 -0.13 -0.20 -0.44 

(Standard Error) -0.03 0.03 0.01 0.04 0.11 

 
14  For a DOLS with one lag and one lead, AEMO’s estimation period is 2000 Q1 to 2012 Q3. Historical data up to 1999 Q3 was required to 

incorporate one lag.   
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The long-run income and price elasticities for each region are all statistically significant and, most importantly, are 
consistent with the general literature for income and price effects on electricity demand. While the income and price 
response is fairly similar across NEM regions, with the exception of Tasmania, there are some slight variations. 
Possible reasons for this are as follows: 

• The modelled consumption for each region captures different proportions of residential versus commercial 
customer loads. 

• Residential customer heating (or cooling) load requirements vary, resulting in larger average electricity bills 
influencing a greater response to income and/or price shocks. This may be the case in Tasmania.    

•  
Once a DOLS was estimated, the residuals from the DOLS were calculated (shown in Figure 2-2 to Figure 2-6). 
The reason for doing this is to assess whether a linear combination of the variables will produce stationary 
residuals. If the residuals are stationary, this indicates that the variables are cointegrated.  

Figure 2-2 — Long-run residuals for Queensland 
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Figure 2-3 — Long-run residuals for New South Wales 

 

Figure 2-4 — Long-run residuals for South Australia 
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Figure 2-5 — Long-run residuals for Victoria 

 

Figure 2-6 — Long-run residuals for Tasmania 

 

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Lo
ng

 ru
n 

re
si

du
al

s

Quarter

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Lo
ng

 ru
n 

re
si

du
al

s

Quarter



 

© AEMO 2013 Residential and commercial load 2-13 

Figure 2-2 to Figure 2-6 present the residuals from the cointegrating equation for each region. The residuals 
appear to fluctuate and revert around a fixed point (zero). This strongly indicates that the residuals from the DOLS 
are stationary and that the variables are cointegrated so that a long run relationship between energy consumption 
and its drivers (income and electricity prices) exists.  

The residuals from the DOLS estimator were then lagged and placed in a dynamic system similar to Equation 2-2 
along with the lagged differences of all the main variables and temperature variables.  

While an appropriate cointegrating long-run equation based on the DOLS was estimated for each region and an 
ECM was found that represented the data reasonably well, problems of interpretation followed because of the 
dominance of seasonality over trend in the data. 

Seasonal data 
The general approach when cointegrating is to place the lagged error correction (EC) term15 within a dynamic 
system, such as an error correction model (ECM). The ECM describes how the dependent variable and 
explanatory variables behave in the short run, and the speed at which the system will adjust back to the long-run 
equilibrium consistent with the long-run cointegrating relationship.       

However, energy consumption is highly seasonal due to varying temperatures throughout the year. AEMO found 
that the contemporaneous coefficients estimated in a standard ECM were unusually large. This led to large 
fluctuations in short-run consumption forecasts. This was possibly due to the ECM model being overwhelmed by 
the presence of seasonal effects in the data. For this reason, AEMO considered the ECM to be inadequate in 
forecasting energy consumption, and additional work was undertaken to develop more suitable annual energy 
models to handle the effects of seasonal data. 

When developing the annual energy model, AEMO referred to the available literature on cointegration models 
specifically for seasonal data. Specifically, AEMO referred to the seasonal error correction model (SECM) 
discussed in Osborn (1993) and the periodic error correction model (PECM) discussed in Franses and Kloek 
(1995).  

Integrated Dynamic Model 
AEMO developed a forecast model similar to the seasonal models mentioned above. The aim was to integrate a 
long-run relationship between the variables (assuming cointegration) while allowing for short-run fluctuations 
consistent with the long-run equilibrium. AEMO refers to this model as the Integrated Dynamic Model (IDM).  

The IDM provided AEMO with a model that assumes a long-run relationship between the variables that has 
satisfactory short-run and long-run solutions in the presence of seasonal data but also provides superior 
interpretational properties.  

While AEMO could have developed two separate models (one for the short-run and one for the long-run), an 
integrated model that produces both short-run and long-run forecasts was preferred because the transition from 
short- to long-run does not need to be specified and can be gradual.  

 
15  The residuals calculated from the DOLS equation. 
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The starting point for AEMO’s IDM was to consider four separate models for each quarter; taking the first difference 
in this format is equivalent to fourth differencing in the standard quarterly times series. As such, the changes in the 
relevant variables have no seasonal component.16  

If the elasticities are assumed to be common across quarters, then the separate four quarter equations can be 
seen as a ‘stacked’ system that can be estimated using Ordinary Least Squares (OLS) as a fixed effect panel data 
model. Essentially the model relates the fourth difference of demand to the fourth difference of each income, price, 
heating degree day, cooling degree day, and a constant. The model can be viewed as four separate models 
estimated in a single system. 

However, such a model has no long-run solution. AEMO derived a long-run solution by integrating the EC term (the 
residuals estimated from the DOLS) lagged one period (one for each quarter) into the model. Such a model 
immediately suggests that, by adding an EC term lagged four periods, the enhanced model is the same as adding 
an EC term lagged one period (but four quarters) in a separately estimated quarterly model. This model can be 
viewed as four separate quarterly models estimated within a single system with the long-run solution embedded 
with the short-run dynamics. 

Equation 2-3 — Integrated Dynamic Model 

∆4𝑦𝑡  =  𝑐0  + �𝑐𝑖1∆4𝑥𝑡−𝑖

4

𝑖=1

 +  𝑐2EC(−1) + 𝑐3EC(−2) + 𝑐4EC(−3) +  𝑐5EC(−4) + u𝑡 

 

Where ∆4 is the fourth-difference operator such that ∆4y = y – y(-4), where c is the estimate of the annual 
difference of 𝑥 for each quarter, c2 through c5 are the estimates of the EC term and u is the error term. 

The IDM is similar in form to an ECM and imposes constant elasticities for each variable across all seasons. By 
taking the fourth difference of the main variables, the IDM can account for seasonal differences so that short-run 
effects are seasonally adjusted.  

The IDM allows for an equilibrium adjustment to vary across seasons so that the adjustment to the long run will 
also be seasonally corrected. To allow for an equilibrium adjustment in each quarter the first, second, third and 
fourth lagged residuals from the DOLS equation are placed in an IDM, similar to Equation 2-3, along with the fourth 
lagged differences of all the main variables and temperature variables to form the regional forecast models.  

AEMO applied diagnostic tests on these models. The tests indicated a stable model for each NEM region. AEMO 
considered the IDM to be superior in modelling seasonal data than a standard ECM, based on impulse response 
functions for short-run demand response to innovations in the variables.  

AEMO considers the regional models based on the IDM to be effective in providing stand-alone, short-run 
forecasting in the presence of seasonal data, while integrating a long-run component to remain consistent with the 
long-run relationship estimated by DOLS.   

Lag length 
Each of the estimated regional models would first incorporate four lags of the EC term to represent an equilibrium 
adjustment for each quarter. However, based on further analysis, AEMO found that not all of the lagged EC terms 
 
16  An ECM, in the traditional sense, will only take into account first differences. This would mean that changes will occur at a quarterly level.  The 

IDM incorporates the fourth difference so that changes are from year to year rather than quarter by quarter. 
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were statistically significant. The following general strategy was used to select the lag length of the EC term in the 
IDM for each NEM region: 

• Construct a model which includes four quarterly lagged EC terms. 

• Check the significance of each of the lagged EC terms. Omit the EC term if it is not statistically significant at 
the 10% level of significance.  

• For each lagged EC term, assess the coefficient. The coefficient for each lagged EC term must be negatively 
signed and is between zero and minus one to indicate a move back towards the long run. 

 
For each IDM, only the fourth lagged EC term was found to be statistically significant with the correct sign and 
value. AEMO also investigated the impulse response of each model and found that all models exhibited sensible 
short- and long-run behaviours.  

Impulse response function 
An impulse response refers to the reaction of a dynamic system in response to some external shock or innovation 
to that system over time. 

AEMO developed impulse response functions for each regional model to assess the dynamic response of energy 
consumption to one-off changes in the price and income variables. The regional impulse response functions 
provide assurance that the short-run effects are sensible and intuitive. The impulse response should show that 
electricity consumption responds positively to a one-off permanent increase in income and negatively to a one-off 
permanent increase in electricity prices. If there are no further disturbances to the system, the long-run response 
should be a smooth transition which demonstrates the estimated long-run elasticities.  

Figure 2-7 — Regional response to permanent 1% increase in income 
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Figure 2-8 — Regional response to permanent 1% increase in electricity prices 
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2.1.3 New South Wales 
The model adopted by AEMO to produce the 2013 New South Wales potential residential and commercial load 
forecast was based on a DOLS estimator to estimate the long-run income and price elasticities and an IDM to 
estimate the forecasting model. 

The first step was to estimate a long-run equation using the DOLS estimator.  

Equation 2-4 — New South Wales long-run DOLS 
Log(y) = 4.4178 + 0.3681 Log(I) − 0.2045Log(P) + 0.0003HDD + 0.0004CDD + 0.0904s2 + 0.1122s3 + 0.0245s4 

Interpreting for the long-run model produces the following observations: 

• Per capita consumption has a long-run income elasticity of +0.37, meaning that the long-run response to an 
increase of 1% in SFD per capita is a 0.37% increase in electricity consumption. 

• Per capita consumption has a long-run price elasticity of -0.20, meaning that the long-run response to an 
increase of 1% in TPE per capita is a 0.20% decrease in electricity consumption. 

• Heating degree days and cooling degree days are significant in explaining energy consumption in the long run 
but are only felt at the time of each heating or cooling event. 

• Seasonal dummies are included to correct for seasonality in the data. 
Once a long-run equation is estimated an EC term can be derived as the residuals from the long-run  
DOLS equation.  

Equation 2-5 — New South Wales EC term 
EC = Log(y) − [4.4178 + 0.3681 Log(I) − 0.2045Log(P) + 0.0003HDD + 0.0004CDD + 0.0904s2 + 0.1122s3

+ 0.0245s4] 

The EC term is lagged for each quarter and placed in an IDM along with the fourth differences of the price and 
income variables to derive the residential and commercial forecasting model. Only the fourth lagged EC term was 
found to be statistically significant with the correct sign and value so it was retained in the final model.     

Equation 2-6 — New South Wales non-large industrial consumption forecasting model 

∆4y =  0.0076 +  0.0684∆4𝐼𝑠 −  0.1631∆4𝑃𝑠 + 0.0003∆4𝐶𝐷𝐷𝑠 + 0.0003∆4𝐻𝐷𝐷𝑠 − 0.8019EC(−4)  

Interpreting the forecast model produces the following observations: 

• The instantaneous response to a 1% increase in SFD per capita is a 0.07% increase in  
electricity consumption. 

• The instantaneous response to a 1% increase in TPE per capita is a 0.16% decrease in  
electricity consumption. 

• The adjustment to the new long-run following short-run disequilibria takes place at a rate of 80%  
after four quarters and gradually converges to the long-run equilibrium after approximately 10 quarters.   

2.1.4 Queensland 
The model adopted by AEMO to produce the 2013 Queensland potential residential and commercial load forecast 
was based on a DOLS estimator to estimate the long-run income and price elasticities and an IDM to estimate the 
forecasting model. 
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The first step was to estimate a long-run equation using the DOLS estimator and derive an EC term.  

Equation 2-7 — Queensland long-run DOLS 

Log(y) = 5.8318 + 0.2289 Log(I) − 0.1573Log(P) + 0.0004CDD + 0.0321s2 + 0.0392s3 + 0.0096s4 

Interpreting for the long-run model produces the following observations: 

• Per capita consumption has a long-run income elasticity of +0.23, meaning that the long-run response to an 
increase of 1% in GSP per capita is a 0.23% increase in electricity consumption. 

• Per capita consumption has a long-run price elasticity of -0.16, meaning that the long-run response to an 
increase of 1% in TPE per capita is a 0.16% decrease in electricity consumption. 

• Cooling degree days are significant in explaining energy consumption in the long-run but are only felt at the 
time of each cooling event. 

• Seasonal dummies are included to correct for seasonality in the data. 
Once a long-run equation is estimated an EC term can be derived as the residuals from the long-run DOLS 
equation.  

Equation 2-8 — Queensland EC term 

EC = Log(y) − [5.8318 + 0.2289 Log(I) − 0.1573Log(P) + 0.0004CDD + 0.0321s2 + 0.0392s3 + 0.0096s4] 

The EC term is lagged for each quarter and placed in an IDM along with the fourth differences of the price and 
income variables to derive the non-large industrial forecasting model. Only the fourth lagged EC term was found to 
be statistically significant and retained in the final model.     

Equation 2-9 — Queensland non-large industrial consumption forecasting model 

∆4y =  0.0016 +  0.1539∆4𝐼𝑠 −  0.0803∆4𝑃𝑠 + 0.0003∆4𝐶𝐷𝐷𝑠 − 0.7486EC(−4)  

Interpreting the forecast model produces the following observations: 

• The instantaneous response to an increase in GSP per capita of 1% is a 0.15% increase in electricity 
consumption. 

• The instantaneous response to an increase in TPE per capita of 1% is a 0.08% decrease in electricity 
consumption. 

• The adjustment to the long-run following short-run disequilibria takes place at a rate of 75% after four quarters 
and gradually converges to the long-run equilibrium after approximately 10 quarters. 

2.1.5 Victoria 
The model adopted by AEMO to produce the 2013 Victoria potential residential and commercial load forecast was 
based on a DOLS estimator to estimate the long-run income and price elasticities and an IDM to estimate the 
forecasting model. 

The first step was to estimate a long-run equation using the DOLS estimator and derive an EC term.  

Equation 2-10 — Victoria long-run DOLS 

Log(y) = 4.7165 + 0.3113 Log(I) − 0.1304Log(P) + 0.0003HDD + 0.0004CDD + 0.0519s2 + 0.0682s3 + 0.0158s4 
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Interpreting for the long-run model produces the following observations: 

• Per capita consumption has a long-run income elasticity of +0.31, meaning that the long-run response to an 
increase of 1% in GSP per capita is a 0.31% increase in electricity consumption. 

• Per capita consumption has a long-run price elasticity of -0.13, meaning that the long-run response to an 
increase of 1% in TPE per capita is a 0.13% decrease in electricity consumption. 

• Heating degree days and cooling degree days are significant in explaining energy consumption in the long-run 
but are only felt at the time of each heating or cooling event. 

• Seasonal dummies are included to correct for seasonality in the data. 
 
Once a long-run equation is estimated an EC term can be derived as the residuals from the long-run DOLS 
equation.  

Equation 2-11 — Victoria EC term 

EC = Log(y) − [4.7165 + 0.3113 Log(I) − 0.1304Log(P) + 0.0003HDD + 0.0004CDD + 0.0519s2 + 0.0682s3
+ 0.0158s4] 

The EC term is lagged for each quarter and placed in an IDM along with the fourth differences of the price and 
income variables to derive the non-large industrial forecasting model. Only the fourth lagged EC term was found to 
be statistically significant and retained in the final model.     

Equation 2-12 — Victoria non-large industrial consumption forecasting model 

∆4y =  −0.0011 +  0.2089∆4𝐼𝑠 −  0.0655∆4𝑃𝑠 + 0.0004∆4𝐶𝐷𝐷𝑠 + 0.0003∆4𝐻𝐷𝐷𝑠 − 0.8452EC(−4)  

Interpreting the forecast model produces the following observations: 

• The instantaneous response to an increase in GSP per capita of 1% is a 0.20% increase in electricity 
consumption. 

• The instantaneous response to an increase in TPE per capita of 1% is a 0.07% decrease in electricity 
consumption. 

• The adjustment to the long-run following short-run disequilibria takes place at a rate of 85% after four quarters 
and gradually converges to the long-run equilibrium after approximately 10 quarters. 

2.1.6 South Australia 
The model adopted by AEMO to produce the 2013 South Australia potential residential and commercial load 
forecast was based on a DOLS estimator to estimate the long-run income and price elasticities and a IDM to 
estimate the forecasting model. 

The first step was to estimate a long-run equation using the DOLS estimator and derive an EC term.  

Equation 2-13 — South Australia long-run DOLS 

Log(y) = 5.0842 + 0.3048 Log(I) − 0.1999Log(P) + 0.0004HDD + 0.0005CDD + 0.0033s2 + 0.0203s3− 0.0121s4 

Interpreting for the long-run model produces the following observations: 

• Per capita consumption has a long-run income elasticity of +0.30, meaning that the long-run response to an 
increase of 1% in SFD per capita is a 0.30% increase in electricity consumption. 
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• Per capita consumption has a long-run price elasticity of -0.20, meaning that the long-run response to an 
increase of 1% in RPE per capita is a 0.20% decrease in electricity consumption. 

• Heating degree days and cooling degree days are significant in explaining energy consumption in the long run 
but are only felt at the time of each heating or cooling event. 

• Seasonal dummies are included to correct for seasonality in the data. 
 

Once a long-run equation is estimated an EC term can be derived as the residuals from the long-run DOLS 
equation.  

Equation 2-14 — South Australia EC term 

EC = Log(y) − [5.0842 + 0.3048 Log(I) − 0.1999Log(P) + 0.0004HDD + 0.0005CDD + 0.0033s2 + 0.0203s3
− 0.0121s4] 

The EC term is lagged for each quarter and placed in an IDM along with the fourth differences of the price and 
income variables to derive the non-large industrial forecasting model. Only the fourth lagged EC term was found to 
be statistically significant and retained in the final model.     

Equation 2-15 — South Australia non-large industrial consumption forecasting model 

∆4y =  −0.0021 +  0.3929∆4𝐼𝑠 −  0.0406∆4𝑃𝑠 + 0.0005∆4𝐶𝐷𝐷𝑠 + 0.0004∆4𝐻𝐷𝐷𝑠 − 0.9689EC(−4)  

Interpreting the forecast model produces the following observations: 

• The instantaneous response to an increase in SFD per capita of 1% is a 0.39% increase in electricity 
consumption. 

• The instantaneous response to an increase in RPE per capita of 1% is a 0.04% decrease in electricity 
consumption. 

• The adjustment to the long-run following short-run disequilibria takes place at a rate of 97% after four quarters 
and gradually converges to the long-run equilibrium after approximately 10 quarters. 

2.1.7 Tasmania 
The model adopted by AEMO to produce the 2013 Tasmania potential residential and commercial load forecast 
was based on a DOLS estimator to estimate the long-run income and price elasticities and a IDM to estimate the 
forecasting model. 

The first step was to estimate a long-run equation using the DOLS estimator and derive an EC term.  

Equation 2-16 — Tasmania long-run DOLS 

Log(y) = 1.9616 + 0.7049 Log(I) − 0.4381Log(P) + 0.0002HDD + 0.1095s2 + 0.1687s3 + 0.0139s4 

Interpreting for the long-run model produces the following observations: 

• Per capita consumption has a long-run income elasticity of +0.71, meaning that the long-run response to an 
increase of 1% in SFD per capita is a 0.71% increase in electricity consumption. 

• Per capita consumption has a long-run price elasticity of -0.44, meaning that the long-run response to an 
increase of 1%  in TPE per capita is a 0.44% decrease in electricity consumption. 
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• Heating degree days are significant in explaining energy consumption in the long run but are only felt at the 
time of each heating or cooling event. 

• Seasonal dummies are included to correct for seasonality in the data. 
Once a long-run equation is estimated an EC term can be derived as the residuals from the long-run DOLS 
equation.  

Equation 2-17 — Tasmania EC term 

EC = Log(y) − [1.9616 + 0.7049 Log(I) − 0.4381Log(P) + 0.0002HDD + 0.1095s2 + 0.1687s3 + 0.0139s4] 

The EC term is lagged for each quarter and placed in an IDM along with the fourth differences of the price and 
income variables to derive the non-large industrial forecasting model. Only the fourth lagged EC term was found to 
be statistically significant and retained in the final model.     

Equation 2-18 — Tasmania non-large industrial consumption forecasting model 

∆4y =  −0.0008 +  0.4426∆4𝐼𝑠 −  0.3699∆4𝑃𝑠 + 0.0003∆4𝐻𝐷𝐷𝑠 − 0.9168EC(−4) 

Interpreting the forecast model produces the following observations: 

• The instantaneous response to an increase in SFD per capita of 1% is a 0.44% increase in  
electricity consumption. 

• The instantaneous response to an increase in TPE per capita of 1% is a 0.37% decrease in  
electricity consumption. 

• The adjustment to the long-run following short-run disequilibria takes place at a rate of 92% after four  
quarters and gradually converges to the long-run equilibrium after approximately 10 quarters.  

2.2 Maximum demand  
This section outlines the methodology used to develop maximum demand forecasts for residential and commercial 
load. These forecasts were prepared by Monash University’s Business and Economic Forecasting Unit.  

Maximum demand is the single highest demand that occurs in any half-hour period over an entire season. As this is 
the most extreme event that occurs in a season, and is highly dependent on weather, there is substantial 
uncertainty in its forecasts. For this reason a probabilistic distribution of maximum demand is forecast, and 10%, 
50% and 90% probability of exceedence (POE) levels are provided. 

For each NEM region, forecasts are developed using separate models for summer (October to March) and winter 
(April to September). A semi-parametric model of half-hourly demand was developed as a series of 48 models 
relating to each period of the day.17 These models include calendar-dependent (e.g., day of week, public holiday) 
and weather effects, as well as half-yearly (for each season) demographic and economic effects, based on AEMO’s 
annual energy forecasts. The models are used together with simulated half-hourly temperature data and residual 
re-sampling to develop POE forecasts of maximum demand. 

 

 
17 See Rob J Hyndman & Shu Fan, 2008. Density forecasting for long-term peak electricity demand, Monash Econometrics and Business Statistics 

Working Papers 6/08, Monash University, Department of Econometrics and Business Statistics. 
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An overview of the maximum demand forecast methodology used in the 2013 NEFR is shown in Figure 2-9. 

Figure 2-9 — Maximum demand forecasts diagram 

 

2.2.1 Maximum demand model  
For each summer and winter period, 48 separate models were built (one for each half-hourly period). The historical 
demand used to build the models is half-hourly non-large industrial demand, that is, native as generated demand 
with large industrial loads subtracted and estimates of rooftop PV added. This demand is equivalent to potential 
residential and commercial load plus transmission network losses and the generator auxiliary loads. 

The model developed by Monash University to model the demand (after a log-transform) in each half-hour period, 
including short-run (half-hourly) and long-run (half-yearly) components, is presented in Equation 2-19. 

Equation 2-19 — Short and long-run demand model 

log (𝑦𝑡,𝑝)  =  ℎ𝑝(t) + f𝑝�𝒘1,𝑡 ,𝒘2,𝑡� +  g(𝒛𝑡) + u𝑡 
 
Where: 

• 𝑦𝑡,𝑝 denotes half-hourly demand (non-large industrial demand) on day t and half hour period p=1, 2, …, 48 
(measured in megawatts). 

• ℎ𝑝(t) models all calendar-dependent effects. 
• f𝑝(𝒘1,𝑡,𝒘2,𝑡) models all temperature effects using two locations within each region to represent 

geographical weather diversity (except for Queensland which uses three locations).  
• 𝒘1,𝑡, and 𝒘2,𝑡 are vectors of current and past temperatures at each location. 
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• 𝒛𝑡 is a vector of current and past demographic and economic variables and degree days at time t (this 
term remains constant across each season). The term g�𝒛,𝑡� is based on AEMO’s annual energy model, in 
which forecasts are also developed on a quarterly basis. The component g�𝒛,𝑡� for each season is based 
on the average of AEMO’s forecasts for the two quarters in the season. (Note that the definition of 
summer and winter has been chosen to align with these quarterly forecasts.) 

• u𝑡 denotes the demand which is left unexplained by the model (the model residuals) at time 𝑡. 

The model above separates out the seasonal average demand. The half-hourly demand across different years is 
normalised by dividing the half-hourly demand values by the seasonal average demand. Equation 2-20 represents 
the normalisation of half-hourly demand. 

Equation 2-20 — Normalisation of half-hourly demand  

yt,p∗  = yt,p / y�i 

Where: 

• yt,p∗  is the normalised demand for day 𝑡 and period 𝑝. 

• y�i is the seasonal average demand for season 𝑖 in MW (equal to energy in GWh multiplied by ℎ/1,000 where ℎ 
is the number of hours in season 𝑖). The seasonal average demand y�i is equal to log (g(𝒛𝑡)) in Equation 2-19. 

•  

• The fixed relationship between half-hourly demand and average demand in Equation 2-20 means that 
forecasts generated using these models will reflect historical average load factors. Monash University included 
model enhancements to address this issue, discussed in Section2.2.3. 

• The log-transform of half-hourly normalised demand is modelled across different years of data according to 
Equation 2-21. 

 

Equation 2-21 — Half-hourly normalised demand models     

log (yt,p∗ )  =  ℎ𝑝(t) + f𝑝(𝑤1,𝑡 ,𝑤2,𝑡) + u𝑡 
 
For half-hourly demand 𝑦𝑡,𝑝

∗ , the data were modelled in natural logarithms, as this resulted in the best fit to the 
available data. The model is also easier to interpret, as the temperature and calendar variables have a 
multiplicative effect on demand. Some specific features of the model are as follows: 
 
• Variable selection followed a stage-wise process using groups of input variables to determine the model with 

the lowest mean square error. 

• Calendar effects are modelled using dummy variables and include day-of-week, time-of-year and public 
holidays, including days immediately before and after public holidays. 

• Temperature effects f𝑝(𝒘1,𝑡,𝒘2,𝑡) are modelled using additive regression splines. 

• Temperatures from the last three hours and the same period from the last six days are included, as are the 
maximum and minimum temperature in the last 24 hours and the average temperature in the last seven days. 

• The daily temperature data, using the same locations, was used by both AEMO and Monash. The same 
warming trends based on the Commonwealth Scientific and Industrial Research Organisation (CSIRO), 
Department of Climate Change and Energy Efficiency, and the Bureau of Meteorology (2009) were applied to 
simulated future temperatures to allow for climate-change impacts. 

The selected model was used to predict historical demand and the residuals were compared to predicted demand. 
From this procedure an evident bias for large demand predictions was subsequently used to adjust forecasts using 
this model. 
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2.2.2 Simulation of maximum demand distribution  
Producing forecasts using the half-hourly demand model requires future values for the temperature variables and 
the calendar-dependent effects. Average seasonal demand forecasts are also required to convert the normalised 
demand forecasts back to a megawatt figure. Temperature is not random but cannot be predicted on a daily basis 
more than a few days into the future.  

Monash University addressed this problem by simulating 1,000 seasons of synthetic half-hourly temperature data 
for each season to be forecast. The simulation process used a “seasonal block re-sampling approach” which 
simulates numerous temperature patterns based on historical data.18  

Each of the 1,000 seasons of simulated temperature data allowed Monash to obtain a single simulated value of 
maximum demand. This was done by using the half-hourly demand models to predict demand at every half-hour 
period in the season and taking the maximum of all predicted half-hourly demands over the simulated season. This 
procedure results in 1,000 values of simulated maximum demand, which were used to forecast the distribution of 
maximum demand. 

As well as temperature variations, the half-hourly model itself involves a random element (the residual u𝑡 in 
Equation 2-19 and Equation 2-21. To capture this random element, Monash also re-sampled the historical model 
residuals to simulate numerous small adjustments to the predicted half-hourly demand in each of the simulations. 

For each season, each of the 1,000 simulated normalised maximum demands was re-constituted with the 
underlying seasonal average demand (as in Equation 2-20). The seasonal average demand, which is based on the 
annual energy models, also has a random element added in for each simulation to represent the uncertainty in the 
seasonal average demand forecast. 

The 10%, 50% and 90% POE maximum demand forecasts were obtained by taking the appropriate percentile of 
the 1,000 simulated maximum demands for each season. A 10% POE maximum demand forecast has a 1-in-10 
chance of being met or exceeded in any season. A 50% POE forecast has a 50-50 chance of being met or 
exceeded, and a 90% POE forecast has a chance of being met or exceeded in 9 times out of 10. 

2.2.3 Changes from 2012  
For the 2013 NEFR, Monash has implemented the following improvements to the modelling and forecasting work: 
 
• Review of the previous price elasticity work for South Australia19, which was extended to all NEM regions. This 

work found that customer sensitivities to price generally vary with time of day and time of year. Reflective peak 
price elasticities were incorporated into the seasonal average demand component of the maximum demand 
modelling. 

• Use of the simulated temperature data to make an adjustment to the seasonal average demand in each 
simulation based on heating and cooling degree days. This allowed for temperature related variations in the 
seasonal average demand. 

• Allowing for changes in the load factor over time. Based on research undertaken by Monash University on 
load factors20, the maximum demand forecast model now adjusts over time to allow a superior model fit. This 
dynamic adjustment allows for changes over time in behaviour, such as air conditioning saturation effects. 

• Incorporating half-hourly rooftop PV traces provided by AEMO to ensure consistency in rooftop PV measures 
used by AEMO and Monash. 

 
18 For more information about this re-sampling process, see Hyndman, R. J. and S. Fan (2008). Variations on seasonal bootstrapping for 

temperature simulation. Report for Electricity Supply Industry Planning Council (SA) and Victorian Energy Corporation (VenCorp). Monash 
University Business and Economic Forecasting Unit.. 

19 See  Fan, S. and R. J. Hyndman (2013). The price elasticity of electricity demand in the National Electricity Market. Report for Australian Energy 
Market Operator. Monash University Business and Economic Forecasting Unit. 

20 See Fan, S. and R. J. Hyndman (2013). Load Factor Analysis in the National Electricity Market and the implications for the peak demand 
Forecast. Report for Australian Energy Market Operator. Monash University Business and Economic Forecasting Unit. 
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CHAPTER 3 - LARGE INDUSTRIAL LOAD 

3.1 Forecasting large industrial load 
This chapter provides the methodology used to develop annual energy and maximum demand forecasts for large 
industrial-scale loads. These are typically transmission-connected customers. While this is a relatively small 
number of customers, this sector accounts for a large proportion of annual energy usage in each National 
Electricity Market (NEM) region. 

The loads typically include aluminium and steel producers, liquefied natural gas (LNG) export and related facilities, 
paper and chemical producers, large grid-connected mines and water desalination. Significant changes in this 
sector are fairly rare; usually only when plants open, expand, close, or partially close. The half-hourly demand for 
this sector is not temperature sensitive, although desalination and water pumping is affected by rainfall. 

The relatively small number of facilities means it is possible to discretely consider and individually to predict each 
customer’s consumption trend.   

Forecasting on a discrete basis is subject to the following limitations: 

• The information AEMO receives from non-public sources is sensitive and cannot be made publicly available.  
This is managed by aggregating information to a regional level. 

• Some new loads are from new customers with no historical data. AEMO will not necessarily be aware of all of 
these new loads for incorporation into the forecasts, particularly when these projects are speculative. 

• Each facility is subject to different commercial pressures so changes to their operation are very difficult to 
predict. In particular, plant closures can be abrupt and information on them is not readily available. 

3.2 Approach used for the 2013 NEFR 
AEMO contacted operators of certain large industrial loads directly to discuss the public information about their 
future operations, and to give them an opportunity to provide their annual energy and maximum demand forecasts 
for confidential use by AEMO. Where sufficient information was not available from the operator, additional forecasts 
were sought from the relevant transmission network service provider (TNSP) or distribution network service 
provider (DNSP), and validated by industry. AEMO also reviewed historical metering data from the facilities. 

This approach has provided forecasts that reflect the views of the operators, who are presumed to have the best 
information about potential future output. 

AEMO used this technique for all transmission-connected customers in the NEM and a limited number of large 
distribution-connected customers of interest.  All non-surveyed customers are in the residential and commercial 
sector, so that category contains many facilities that would generally be considered industrial. 

One learning from the process used this year was that a consumption threshold, rather than connection voltage, 
could be a better classification for future forecasts. AEMO will investigate this approach for the 2014 NEFR. 

The operators were asked to provide the following three forecasts: 

• High, reflecting positive commercial circumstances for the facility in question. 

• Medium, reflecting the current most likely level of operation for expected conditions. 

• Low, reflecting unfavourable commercial conditions. 

After appropriate consideration and assessment of the responses, AEMO in turn linked these responses to the 
high, medium and low economic growth scenarios used in the NEFR.   

In some cases, prospective customers or expansions that are yet to be committed were included in the high case 
only.  Where existing customers were known from public information to be assessing possible closure, a shutdown 
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was included in the low scenario only. This was applied to Victoria’s Point Henry aluminium smelter from 1 July 
2014.21 

In some cases, operators advised that the high scenario should include the installation of co-generation, which 
reduced the high scenario load forecast for those customers. 

Prospective expansions, new projects or closures cause the majority of variation between economic scenarios. 

To determine the large industrial load contributions to maximum demand forecasts, AEMO reviewed several years’ 
historical consumption at times of regional summer and winter peak. From these a diversity factor was determined 
for each large industrial load and was applied to the corresponding growth forecasts. 

Large industrial load representation issues to be noted 

Desalination and water-supply pumping loads vary due to rainfall rather than economic conditions, so the economic 
scenarios were equalised. The initial years of the outlook period were estimated from information about likely short-
term conditions, then trended to their expected long-term average consumption. For the maximum demand 
forecast, AEMO adjusted these loads down to account for their demand–response capability. This capability was 
excluded in the separate demand-side participation estimate to avoid double-counting (see Chapter 7). 

The demand–response capability of a zinc refinery in Queensland was similarly presented as a reduction in large 
industrial load maximum demand. All other large industrial load demand–response capabilities are shown in 
Chapter 7. AEMO intends to consolidate demand–response capabilities in the 2014 NEFR. 

The energy consumption of each New South Wales pumped storage schemes is included as large industrial load at 
their historical average consumptions, totalling approximately 470 GWh per year. These loads are highly variable 
depending on wholesale electricity market conditions, and the low scenario reduces their load by 50% over 20 
years. They are all assumed to be shutdown at time of peak and therefore don’t contribute to maximum demand.  
Queensland’s Wivenhoe pumped hydro is not included. These approaches are consistent with the 2012 NEFR for 
each scheme. AEMO intends to investigate exclusion of all pumped hydro in the 2014 NEFR.  

The LNG projects represent the most significant large industrial load growth, including an uncommitted project in 
the high scenario. The majority of LNG load occurs upstream, mainly in pipeline compression. Liquefaction energy 
is mostly supplied on-site. 

Customer announcements occurring after survey completion and not taken into account 

In Victoria, Ford has announced an intention to cease production in October 2016.22 These plants were not part of 
the large industrial load assessment, so this change appears in the residential and commercial sector.   

In Tasmania, Gunns (Longreach) has recommenced operations.23 This is not taken into account in the forecasts.    

In South Australia, Rex Minerals has announced an intention to proceed with the Hillside mine to begin operation in 
2016.24 This is not taken into account in the forecasts. 

3.3 Changes from the 2012 methodology 
The large industrial load methodology has been changed from the approach used in 2012. 

In 2012 AEMO developed large industrial load forecasts using a combination of TNSP information and the best 
available public information in the short term, and assumptions based on long-term trends in the longer term. In 

 
21 Available at: http://www.alcoa.com/australia/en/news/releases/2012_06_29_Point_Henry_Review_Complete.asp#. 
22 Available at: http://www.ford.com.au/about/newsroom-result?article=1249024395989.  
23 Available at: http://www.bordermail.com.au/story/1563831/gunns-woodchip-mill-reopens/?cs=2452.  
24 Available at: http://www.rexminerals.com.au/wp-content/uploads/2013/02/20130604-Rex-signs-EPC-and-Financing-MOU-FINAL.pdf.  

http://www.ford.com.au/about/newsroom-result?article=1249024395989
http://www.bordermail.com.au/story/1563831/gunns-woodchip-mill-reopens/?cs=2452
http://www.rexminerals.com.au/wp-content/uploads/2013/02/20130604-Rex-signs-EPC-and-Financing-MOU-FINAL.pdf
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2012 customers were not directly contacted. Maximum demand forecasts were also drawn from this data using 
average megawatt values from the energy forecasts, as many of the large industrial loads were relatively constant 
throughout the year.  

For New South Wales, a number of commercial consumers were moved from the residential and commercial 
category into the large industrial category. These were added to ensure adequate dilution of forecast profiles within 
the aggregated data to protect confidential customer lad information, after the closure of the Kurri Kurri aluminium 
smelter. As a result, the historical and forecast large industrial annual energy values have increased, and 
residential and commercial annual energy values have decreased, by this amount. 

For Victoria, the 2013 large industrial annual energy forecasts and historical data include demand met by the 
generators, Anglesea Power Station and Portland Wind Farm. In 2012 forecasts the loads of Point Henry and 
Portland Aluminium were reduced by this generation. However, as this generation was included in the aggregate 
published, the 2012 residential and commercial, and non-large industrial energies were increased by this 
generation to ensure overall supply/demand remained in balance.  

 In the 2013 representation, the historical and forecast large industrial annual energy values have increased to 
include the component met by this generation, and residential, commercial, and non-large industrial annual energy 
has decreased by the same amount. 
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CHAPTER 4 - ROOFTOP PHOTOVOLTAIC  

4.1 Introduction 
This chapter provides the methodology used to develop the 2013 National Electricity Forecasting Report (NEFR) 
rooftop photovoltaic (PV) forecasts. The 2013 methodology incorporates changes that address stakeholder 
responses to the 2012 forecasts and approach. The changes are summarised in Section 4.7. 

This is the second year that AEMO has considered the impact of rooftop PV generation in offsetting actual and 
forecast annual energy and maximum demand in the National Electricity Market (NEM). AEMO continues to 
improve and develop the rooftop PV modelling and forecast accuracy, as well as account for the main drivers to 
rooftop PV uptake. 

Changes to the methodology used in the 2012 NEFR are as follows: 

• Development of a comprehensive historical estimate of rooftop PV. 

• Modelling of a typical rooftop PV system payback period using several key drivers. 

• Estimating uptake rate as a function of the payback period. 

• Application of saturation levels to installed capacity forecasts. 

• Improvements in the methodology and data sources to estimate rooftop PV contribution at times of 
maximum demand. 
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An overview of the rooftop PV forecast methodology used in the 2013 NEFR is shown in Figure 4-1. 

Figure 4-1 — Rooftop PV forecast diagram 
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4.2 Rooftop PV scenarios 
This section describes the three rooftop PV scenarios used for the 2013 NEFR forecasts. The three scenarios 
reflect combinations of drivers that provide different levels of incentive for new rooftop PV installations. The three 
scenarios are: 

• The Slow Uptake scenario, which is a combination of drivers that do not incentivise new installations. 

• The Moderate Uptake scenario, which is a combination of drivers that provide moderate incentives for new 
installations. This is the most likely scenario. 

• The Rapid Uptake scenario, which is a combination of drivers that strongly incentivise new installations. 

All three scenarios assume the Australian Government’s national Renewable Energy Target (RET) scheme 
remains in place until 2030. 

Economic payback, through reduced electricity bills and government incentives, is the primary factor influencing 
whether a household or business installs a rooftop PV system. The scenarios reflect the following main drivers that 
determine economic payback periods: 

• Economic conditions. 

• Rooftop PV system costs. 

• Government incentives. 

The scenarios and drivers are shown in Table 4-1: 

Table 4-1 — Drivers and mapping of rooftop PV scenarios 

Driver Slow Uptake scenario Moderate Uptake scenario Rapid Uptake scenario 

Economic conditions 
Conservative retail and 
wholesale electricity prices 
and CPI. 

Medium retail and wholesale 
electricity prices and CPI. 

High retail and wholesale 
electricity prices and CPI. 

Rooftop PV system 
costs Slow system cost reductions. Moderate system cost 

reductions. Rapid system cost reductions. 

Government 
incentives25 

Feed-in pricesa largely below 
average historical values. 

Export prices follow a similar 
trend to historical values. 

Export prices largely above 
average recent values.  

a. Refers to the feed-in tariff, which is the dollar amount per kWh that an electricity retailer pays for rooftop PV electricity fed into the power system. 

Refer to Table 1-1 to see how the three rooftop PV scenarios map to the 2012 AEMO scenarios, the 2013 NEFR 
references, and other related scenarios.  

4.3 Historical estimates 
This section describes the development of a historical, 30-minute interval data trace of rooftop PV generation 
spanning from January 2009 to February 2013 and applicable in each NEM region. Scant rooftop PV data was 
available prior to January 2009, and generation was assumed to be negligible.  

The data sources used to estimate historical rooftop PV data include a rooftop PV hourly average generation (MW) 
per installed capacity (MW) trace (termed “contribution factor traces”) for each NEM jurisdiction developed by 
ROAM Consulting as part of the 100% Renewables Study26; estimates of rooftop PV installed capacity (MW) 

 
25 In all scenarios, the Renewable Energy Target (RET) is assumed to remain unchanged. 
26 Solar PV data from ROAM Consulting as part of the 100% Renewables Study is available at 

http://www.climatechange.gov.au/sites/climatechange/files/files/reducing-carbon/Solar_-_Rooftop_PV_-_1_MW_traces_-_version_2.xlsx. 
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provided to AEMO by distribution network service providers (DNSPs); and sunlight intensity data available from the 
Bureau of Meteorology (BOM).27 

Reliable estimates of historical rooftop PV installed capacity and generation levels are important as these can be 
used in several ways when developing rooftop PV forecasts. This includes: 

• Determining the starting point of rooftop PV forecasts. 

• Assessing the accuracy of historical forecasts. 

• In calibrating of model parameters used to develop rooftop PV forecasts. 

• For statistical analysis and to identify rooftop PV data trends. 

• Identifing correlations with other data such as sunlight intensity and as a means to project future data. 

Two main historical half-hourly data traces were developed and used to estimate other historical data such as 
aggregate rooftop PV power and energy in each NEM jurisdiction. These traces are: 

• Contribution factor trace (generation as a percentage of installed capacity). 

• Installed capacity trace. 

To determine historical power and energy, the following formulas were applied: 

• Half-hourly average power (MW) = (half-hour average contribution factor) × (installed capacity (MW) 

• Energy generation in any half hour (MWh) = half-hourly average power (MW) × (0.5 hour) 

The methodology used to develop historical rooftop PV contribution factor data and historical rooftop PV installed 
capacity data is shown in the sections below. 

4.3.1 Historical rooftop PV contribution factor 
The historical contribution factor was estimated using a combination of ROAM Consulting data and projected 
rooftop PV data using sunlight intensity. A historical regression analysis between these datasets was carried out to 
project rooftop PV output data using sunlight intensity data. A summary of this process follows. 

 
27 Solar exposure data from the Bureau of Meteorology. Available at http://www.bom.gov.au/climate/data/?ref=ftr. 
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Figure 4-2 — Historical contribution factor process 

 

The Roam Consulting and BOM datasets of daily sunlight and daily rooftop PV output are correlated based on 
matching load duration curves. The two datasets are sorted from largest to smallest and each BOM sunlight data 
point is used to retrieve the corresponding ROAM Consulting rooftop PV output data point. Daily rooftop PV output 
is projected from July 2011 to February 2013 using the correlations established between the two datasets and the 
BOM sunlight data from July 2003 to June 2011. This approach accounts for non-linear relationships between daily 
sunlight intensity and daily rooftop PV output. 

AEMO’s historical estimate was then formed by combining the ROAM Consulting rooftop PV output data with the 
projected data from the historical regression analysis. 

The ROAM Consulting rooftop PV and BOM sunlight intensity datasets both relate to capital city location for each 
NEM region. Consequently, this approximation does not take into account the weather conditions and 
corresponding rooftop PV output from rooftop PV systems located remotely from the capital city. Given the 
concentration of population in the capital cities, AEMO does not expect that this would materially affect the results. 
The spread of rooftop PV panels across a NEM region may be the subject of future studies, as there may 
potentially be ways to estimate the output from these systems. 

ROAM Consulting’s rooftop PV data had an overall average contribution factor (generation as a percentage of 
installed capacity) of 18–19%. AEMO advised (based on PVoutput.org data), that the observed NEM contribution 
factor ranged from 14–16% (i.e., about one-tenth lower). 

The ROAM solar output data was derived from calculating solar irradiation based on satellite imagery. As such, the 
output calculated by ROAM Consulting might be more reflective of ideal conditions and may not necessarily 
capture imperfections due to geographical shading, atmospheric interference, and in particular, low zenith angles 
particularly around sunrise and sunset.  

One implication of this is the introduction of greater inaccuracy when considering output for a specific half-hour 
around this time. Estimated error ranged between -50% to +25% of peak output. However, this issue is irrelevant 
when considering annual energy, as the total energy output for each day is kept constant. Estimate error for annual 
energy was 4%. 
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4.3.2 Historical installed capacity 
The historical installed capacity datasets for the period January 2009 to December 2012 are based on data 
provided by the DNSPs in each NEM region. AEMO considers this to be a reliable source of information that is both 
timely and accurate, given that installed capacity is a key component for estimating historical rooftop PV energy 
generation as well as developing installed capacity forecasts. 

Data from the Clean Energy Regulator (CER)28 is also used to validate the DNSP data. There are some 
discrepancies between the DNSP and CER installed capacity data sources, in particular an inherent lag in the CER 
data, which may take up to 12 months to be published. To account for this, AEMO performed a regression analysis 
using historical CER data to estimate CER data for the 12-month lag period.  

In general the CER data closely matched the DNSP data and was consequently used to estimate historical 
installed capacity. 

CER data was used to estimate historical installed capacity growth in January and February 2013 in the absence of 
DNSP data. 

4.3.3 Adjustment of 2012 historical installed capacity 
As part of the 2012 methodology, the DNSP data was scaled to match the approximate trend in the CER data; this 
accounted for historical discrepancies between these two data sources. Revisions of the data sources over the 
past 12 months have indicated there is a general agreement in recent months’ data despite historical 
discrepancies. 

As a result, in 2013 the DNSP data was not scaled, and has been used directly to estimate historical installed 
capacity for the period January 2009 to December 2012. 

4.4 Installed capacity forecast 
This section describes the methodology used to develop the rooftop PV installed capacity forecasts. These reflect 
the total rated output capacity of all systems in the NEM regions. These forecasts were used as inputs to develop 
the annual energy forecasts and the contribution to maximum demand forecasts. 

The installed capacity forecasts were developed by following a number steps for each NEM region and for each 
uptake scenario. These steps are as follows: 

1) Derive payback period forecasts for a typical rooftop PV system in each NEM jurisdiction. 

2) Develop and calibrate a relationship between payback period and installed capacity uptake rate using 
historical and 2012 NEFR data.  

3) Derive installed capacity forecasts as a function of the payback period. 

4) Apply saturation levels to the installed capacity forecasts. 

These steps and various components are described in more detail in the sections below. 

4.4.1 Modelling the payback period 
A payback calculator was developed to forecast the number of years required to repay initial rooftop PV system 
costs (i.e., the payback period). The payback period results were converted into installed capacity growth rates, 
which were then applied to existing installed capacity to generate the forecasts. 

Table 4-2 below provides a summary of the parameters modelled in the payback period calculator and the values 
used in the simulations. 

 
28 CER. Available at: http://ret.cleanenergyregulator.gov.au/REC-Registry/Data-reports. 
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Table 4-2 — Payback period calculator parameters and assumptions 

Parameter Description Value 

Feed-in tariff rate 
Rate paid to customer for surplus electricity sent back to the grid. This value is based 
on the actual rates as reported by local regulatory determinations or policies in each 
NEM region. 

Varies by NEM 
region 

System size The average solar rooftop PV system size for new installations (moving average, non-
cumulative). 3.5 kW 

System cost per 
Watt Represents the cost per Watt of a solar rooftop PV panel before a rebate is provided. $3.0029 

System cost 
reduction 

The expected annual decrease in the cost per Watt of solar rooftop PV panels as a 
percentage of the previous year’s cost. 5% 

Percentage of 
energy exported 

Represents the energy exported to the grid as a percentage of the energy generated 
by solar rooftop PV. 50% 

Number of STCs The number of small-scale technology certificates (STCs) eligible to be created for the 
system depending on region. 

Varies by 
solar region30 

STC price The estimated market price for STCs. $30.00 

Abolishment year of 
STC rebate 

The year when the STC rebate for new systems is expected to be abolished, after 
which no rebate would be provided for new rooftop PV systems. 2030 

Retail electricity 
price31 

The nominal electricity price for electricity that would be paid by consumers with no 
solar rooftop PV installed. 

Varies by NEM 
state 

Wholesale 
electricity price The price at which retailers would be expected to purchase electricity. Varies by NEM 

state 

Consumer Price 
Index (CPI) The forecast Consumer Price Index (CPI). Varies by NEM 

state 

 

Factors that the payback calculator does not account for are as follows: 

• Impacts and costs of rooftop PV on transmission and distribution networks. 

• Costs associated with enhancing the network to support rooftop PV uptake, including voltage control and 
protection settings. 

• Impact of rooftop PV uptake on network tariffs. 

• Market impact of rooftop PV increasing total generating capacity in the NEM. 

4.4.2 Modelling the uptake rate as a function of the payback period 
AEMO used a study conducted by Intelligent Energy Systems (IES) for the Clean Energy Council (CEC)32 in June 
2012, involving analysis of possible modifications to the Queensland solar feed-in tariff, as the basis for developing 
a relationship between the payback period and installed capacity growth rates.  

In the report, this relationship is modelled using a mathematical function that models the primary driver (a financial 
incentive for relatively low payback periods) and an environmental/social conscience incentive (for relatively high 
payback periods.)  

 
29 $3.00 is accurate as at December 2012, in real 2011-12 dollars. 
30 The calculation of STC numbers is available at http://ret.cleanenergyregulator.gov.au/ArticleDocuments/205/solar-stc-calculations-1212.pdf.aspx. 
31 Retail and wholesale electricity price, and CPI forecasts, are sourced from NIEIR. 
32 IES. Available at: http://www.cleanenergycouncil.org.au/resourcecentre/reports.html. 

http://ret.cleanenergyregulator.gov.au/ArticleDocuments/205/solar-stc-calculations-1212.pdf.aspx
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AEMO used a similar structure to the relationship published in the IES report to model the relationship between the 
payback period and the growth rate. This is shown in Figure 4-3 below: 

Figure 4-3 — Uptake rate as a function of payback period 

 

As shown in Figure 4-3, most rooftop PV installed capacity growth is expected to be driven by a financial incentive 
in the form of a lower payback period. A relatively small proportion of growth is expected to be driven by an 
environmental/social conscience incentive. 

The financial incentive was modelled using a second-order polynomial equation that applies for payback periods 
below a certain threshold year value. The equation has the form shown below, where y represents the rooftop PV 
uptake rate and x represents the payback period: 

Equation 4-1 — Financial incentive modelling equation 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

The environmental incentive was modelled using a linear equation that applies above the given threshold year 
value and is assumed to go to zero growth at a payback period of 25 years. The equation has the form shown 
below, where y represents the rooftop PV uptake rate and x represents the payback period: 

Equation 4-2  — Environmental/conscious incentive modelling equation 

𝑦 = 𝑎𝑥 + 𝑏 
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The coefficients of the equations as well as the threshold values were calibrated using best fit trend line equations 
in conjunction with historical and 2012 NEFR data. These parameters also varied between uptake scenarios and 
between NEM regions. 

One difference in applying the transfer function between AEMO’s and the IES methodology was the way the effects 
of saturation were modelled. Saturation is modelled implicitly in the IES methodology as an input into the transfer 
function, while saturation effects are modelled at a later stage in AEMO’s methodology using a separate limit 
equation. (Refer to Section 4.4.3 for further details on the application of saturation levels to installed capacity 
forecasts). 

As a result of the limited availability of historical rooftop PV installed capacity data in the NEM (approximately four 
years of data compared with the forecast outlook period of 20 years), there are inherent difficulties in the amount of 
data that is able to be used for a statistical regression analysis as the basis for forecasting future installed capacity.  

The current forecasting methodology is based on this historical data and any small aberrations in the data may be 
overestimated by the regression analysis. This aspect is expected to improve in the future as more actual rooftop 
PV data becomes available. 

4.4.3 Estimating saturation levels 
Forecasting installed capacity requires information about the extent of suitable roof space for rooftop PV 
installations. Saturation capacity is the value at which all suitable roof space is used. 

The Victorian Government Department of Sustainability and Environment commissioned Entura – Hydro Tasmania 
to undertake a study of rooftop PV saturation capacity in the City of Port Phillip in Melbourne.33 Rooftops were 
mapped with aerial lasers, analysed by computer, and a sample verified manually. Allowing for roof orientation and 
tilt, solar exposure, shading, irregular geometry and minimum size, a conservative estimate of 220 MW of rooftop 
PV capacity was reached. This comprised 180 MW on dwellings and 40 MW on large flat roofs, assumed to be 
commercial. 

According to census data, the City of Port Phillip is very densely populated by Australian standards. Only 14% of its 
43,728 occupied private dwellings are separate houses, with the majority being units and apartments; the 
Australian average is 75%. Dividing the city’s estimated residential potential of 180 MW by the number of occupied 
private dwellings results in an average installed capacity per dwelling of over 4 kW. 

In the absence of a more comprehensive study, this result was used as the starting point for assessing the NEM’s 
installed capacity at saturation. Due to the small study size, conservative assumptions were applied. 

First, the average system size per household for saturation was reduced from 4 to 3.5 kW. This allows for aesthetic 
considerations and site-specific installation constraints that may not have been apparent in the study.  

Across the outlook period, roof space per dwelling is forecast to increase, as the average size of newly-built houses 
is larger than the current average size of all dwellings. Also, as solar panel efficiency increases, capacity will 
increase for a given roof area. These factors were not considered when calculating an estimate for saturation.  

Second, it was assumed that the uptake rate, even at saturation, would only be 75%. Some rooftops will remain 
unoccupied even if a rooftop PV installation makes economic sense for reasons including the following: 

• Restrictions by authorities (e.g., heritage overlays). 

• Aesthetic considerations. 

• Lack of interest or awareness. 

• Lack of incentive for rental properties. 

• Lack of agreement by building management (e.g., body corporate). 

 
33 City of Port Philip report. Available at: http://www.enviroehub.com.au/index.php?nodeId=404. 
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The number of suitable dwellings in NEM regions at the last census (2006) was estimated as the number of 
occupied, detached houses, plus 30% of other dwelling types. An additional allowance for commercial installations 
was added, using the ratio of residential to commercial capacity in the Port Phillip study. The rooftop PV uptake 
modelling assumed residential uptake only, and the impact of commercial installations is not expected to have a 
material effect on the forecasts.  

Saturation capacity was then calculated as the total number of suitable dwellings multiplied by the 75% uptake rate 
and by the 3.5 kW average. 

4.4.4 Application of saturation levels to installed capacity forecasts 
The impact of saturation on the installed capacity growth is applied at the last stage of installed capacity forecast 
development. To model the effects of saturation the following limit equation was used: 

Equation 4-3 — Saturation growth rate equation 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 
𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  𝑈𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 

𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 × �1− �

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑔𝑟𝑜𝑤𝑡ℎ

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
𝑙𝑒𝑣𝑒𝑙

�� 

It was assumed that the effects of saturation would only come into effect once the cumulative growth had reached 
a threshold percentage of the saturation level. As a result, the formula above was only applied to growth rates 
above this threshold. The value of the threshold was calibrated using 2012 historical data and installed capacity 
forecasts. 

4.4.5 Barriers to uptake 
Physical constraints within distribution networks can limit uptake volume. For example, to feed excess energy into 
the distribution network, rooftop PV systems must generate power at a higher voltage than in the street. If several 
systems do this simultaneously, this raises the street voltage. If the street voltage exceeds the threshold of a 
rooftop PV system, the latter will shut down and the system’s owner will be deprived of expected revenue. 

Anecdotal reports indicate that to prevent this, some distribution businesses are already imposing restrictions on 
the size of rooftop PV connections. Alleviating this constraint would involve distribution network augmentation. In 
the future, household electricity storage could also play a role in alleviating this constraint. 

Analysis of physical limitations is beyond the scope of these forecasts, which assume they may delay installations 
in some localities, but will not affect overall uptake across the NEM. 

Another potential barrier is the ability of the solar industry to service the rate of uptake. Given historical rooftop PV 
uptake this is not expected to have a material effect on the results. 

4.5 Rooftop PV energy forecasts 
This section describes the development of the rooftop PV forecasts used in the 2013 NEFR. The forecasts are 
derived using the installed capacity forecasts and the average monthly rooftop PV energy distribution profiles.  

The methodology for developing the installed capacity forecasts is shown in Section 4.4. 

The average monthly energy distribution profiles were calculated using the average monthly aggregated energy 
data from ROAM Consulting and AEMO’s developed data ranging from July 2003 to December 2012. These 
profiles were then scaled to account for practical aspects of energy generation from a rooftop PV system. This was 
based on a comparison of the simulated data against actual rooftop PV sample data from PVOutput.org. The 
average energy profile was used for the remainder of the outlook period and was multiplied with the installed 
capacity forecasts to derive the energy forecasts. 

The current rooftop PV energy forecasts do not assume any improvements in energy efficiency or any 
technological improvements to solar panels in the future that may affect the amount of energy generated from a 
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given amount of installed capacity. Also, the effect of panel degradation on energy output is not modelled as part of 
the rooftop PV energy forecasts.  

Possible improvements in panel efficiency may occur in the future and would apply to new installations at the time. 
The majority of solar panels are expected to have a service life of over 10 years and as a result any potential 
improvements in efficiency may have only a small impact on energy generation forecasts. This is due to the 
cumulative generation from all systems, including those installed earlier and still in service. 

4.5.1 Adjustment of results against actual data 
The average monthly energy distribution profile results as calculated using ROAM Consulting’s rooftop PV output 
data were compared to sample data obtained from PVOutput.org, which publishes actual rooftop PV generation 
data as reported by system owners.34 This was done as a validation and cross check of simulated results against 
actual data. Figure 4-4 shows actual power and energy from a sample system obtained from PVoutput.org. 

Figure 4-4 — Sample of actual power and energy  

 

Source: PVOutput.org 

For several reported rooftop PV systems, actual monthly energy generation was divided by the system’s capacity to 
produce a normalised generation trace of a 1 kW system. This was then averaged across all sample systems in the 
NEM regions. 

 
34 PVOutput.org website is http://www.pvoutput.org/. 
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AEMO’s estimates were compared to the reported generation of the sample systems. In comparison, generation 
from the sample systems were lower on average than AEMO’s estimates. This result is expected due to a variety of 
practical aspects not modelled as part of AEMO’s simulations, including: 

• Different panel tilt and orientation. 

• Shading. 

• Overheating. 

• Sub-optimal configuration and installation of components. 

Based on this analysis, AEMO’s estimated generation results were lowered to align with the sample generation 
data from PVOutput.org. 

Adjusting energy profiles according to the comparison with actual sample data introduces the possibility of the 
sample systems not being representative of rooftop PV systems across the NEM. People who log their system 
generation and upload it to a website can reasonably be expected to also ensure that their system is configured, 
installed and maintained to above-average standards.  

There is an opportunity for future work to analyse whether these energy generation results are over-estimated. 

4.6 Rooftop PV contribution to maximum demand 
Rooftop PV generation at the time of regional maximum demand was forecast for each region by multiplying the 
region’s forecast installed capacity by a factor reflecting the ratio of rooftop PV output on high demand days to 
installed capacity. 

The data sources used in calculating the contribution to maximum demand forecasts per NEM region included the 
half-hourly rooftop PV historical contribution factor and the half-hourly native demand. The following steps were 
taken to derive the rooftop PV contribution to maximum demand forecasts: 

1) Calculate average time of maximum demand based on historical maximum native demand times. 

2) Gather rooftop PV performance at the average maximum demand time +/-1 hour for each historical 
maximum demand day. 

3) Calculate the average rooftop PV contribution from the sample data and multiply this with the installed 
capacity forecast to derive the contribution to maximum demand forecasts. 

In Tasmania, data was gathered based on actual rather than averaged maximum demand times. This was due to 
the historical variability in the time of maximum demand in this region, which may occur either early morning or late 
afternoon. Separate analyses have also been performed for summer and winter. 

One potential outcome of forecasting rooftop PV contribution to maximum demand in the long run is that as 
installed capacity and rooftop PV generation increases, more demand during the day would be offset. This could 
lead the maximum demand time shifting to later in the day and a decrease in the contribution of rooftop PV at 
future times of maximum demand. In the long term this may continue until the maximum demand time is close to 
sunset. The possible effects of this shift and reduction are not modelled and remain a subject for future analysis. 

4.7 Changes from the 2012 methodology 
Changes from the 2012 rooftop PV forecasting methodology are as follows: 

• The impact of feed-in tariff changes legislated in 2012 (all regions except Tasmania introduced new 
legislation) was modelled more accurately and comprehensively. 

• A new economic payback calculator replaced the regional economic payback models. 

• Installed capacity and output data was updated to include 2012 data. 
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• Use of averaged data from ROAM Consulting and the historical traces to derive the monthly traces instead 
of traces from the PVWatts online calculator and daily generation data for typical systems from the Clean 
Energy Council. 

• Development of a clearer link between the installed capacity forecasts and the payback and saturation 
estimates. 
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CHAPTER 5 - ENERGY EFFICIENCY 

5.1 Introduction 
This chapter provides the methodology used to develop the 2013 National Electricity Forecasting Report (NEFR) 
energy efficiency forecasts. The 2013 methodology incorporates changes from the 2012 methodology, which 
improve the transparency of the forecast approach and the quality of the results. The changes are summarised in 
Section 5.7. One key change was limiting potential energy savings to those derived from Commonwealth 
Government measures only, as state-based programs are much smaller and including them can introduce a risk of 
double-counting energy savings. 

An overview of the energy efficiency forecast methodology used in the 2013 NEFR is shown in Figure 5-1. 

Figure 5-1 — Energy Efficiency forecasts diagram 
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Drivers of change in energy consumption 

Energy efficiency is one of the three drivers of changes in energy consumption. The others are activity and 
structural effects. This is shown in Figure 5-2.  

Figure 5-2 — Drivers of change in energy consumption35 

 

The underlying econometric model used to forecast residential and commercial load uses state income (gross state 
product (GSP) or state final demand (SFD)) to model activity effects. The estimated income elasticity, representing 
the change in consumption for each change in state income, captures the long-term trends in structural and 
efficiency effects.  

On the structural side, these include the reduction in manufacturing and growth in importance of service-based and 
resource extraction industries, and on the efficiency side these include the general trend that when appliances are 
replaced it is by more efficient ones. 

Any substantial deviations from the long-term efficiency trend will not be captured by the econometric model. These 
deviations are assessed separately and are the basis of the energy efficiency forecasts. The NEFR energy 
efficiency forecasts represent the reductions in annual energy and maximum demand due to the difference 
between historical and forecast energy efficiency improvements.  

These are applied to the non-large industrial forecasts, along with the reduction in demand due to generation from 
rooftop PV, to determine residential and commercial load. 

This is shown in Figure 5-3 with the “post-model adjustment”, which refers to the reduction applied to non-large 
industrial load. 

 
35  Bureau of Resources and Energy Economics. Economic Analysis of End-use Energy Intensity in Australia. 2012. Available: 

http://www.bree.gov.au/publications/energy-intensity.html. Viewed 19 March 2013. 

Change in energy consumption

Activity effect Intensity effect

Structural effect Efficiency effect



 FORECASTING METHODOLOGY INFORMATION PAPER 

5-44 Energy efficiency © AEMO 2013 

Figure 5-3 — Scope of energy efficiency forecasts 

 

Energy efficiency forecast approach 

Forecasts were developed for three uptake scenarios; Rapid Uptake, Moderate Uptake, and Slow Uptake defined 
in Section 5.2. 

The forecasts for each uptake scenario are developed using a three step approach: 

a) Estimate the annual energy savings from energy efficiency policy measures from 2000 to 2033.  

b) Calculate the difference between the annual energy savings trend for the aggregate of all NEM regions in the 
regression period (2000-12) and the energy efficiency savings expected in the forecast period (2013-33). This 
difference between the two is the NEFR energy efficiency forecast for annual energy. This is disaggregated 
into forecasts for each region based on region-specific savings determined in Step 1 or in previous studies, 
and is converted from savings measured at the end-user’s premises to savings observed at transmission 
connection points (used for AEMO’s forecasts) by adding distribution losses. 

c) The NEFR regional energy efficiency forecasts for maximum demand (the impacts on summer and winter 
maximum demand) are calculated from the regional energy efficiency forecasts for annual energy developed 
in Step 2. 

More information about the steps is provided in Section 5.3, Section 5.4, and Section 5.5. The forecasts 
themselves are provided in Appendix C.  

Data sources 

The energy efficiency forecast approach is based on the following two key data sources: 

• George Wilkenfeld and Associates: “Review of Impact Modelling for E3 Work Program”. Unpublished report to 
the Department of Climate Change and Energy Efficiency (DCCEE), August 2012. 

• Pitt & Sherry: “Final Report: Qualitative Assessment of Energy Savings from Building Energy Efficiency 
Measures”, unpublished report prepared for DCCEE, February 2013. 

These recently-completed studies provide an up-to-date assessment of energy efficiency savings across 
programmes initiated at the Commonwealth Government level. The main source of information for these studies is 
regulation impact statements (RIS), which are impact assessments undertaken before programs are initiated. 
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Potential double counting and scheme interactions 

Only savings from Commonwealth Government level measures are included, to reduce the risk of double counting 
as regional programs tend to target similar efficiency savings and bring their impact forward. Any risk of materially 
understating potential savings is low because state government level measures tend to be comparatively small. 

Even when limiting the focus to Commonwealth Government programs, there is a risk of double counting savings 
from measures targeting appliances and measures targeting building stock as these schemes interact. For 
example, improvements in air conditioning (an appliance program) can lower the energy use in a particular building, 
as can insulation (a building program). Program savings can only be added together if, in each case, savings from 
programs that interact are assumed. 

The risk is limited though as the studies used as the basis for the NEFR energy efficiency forecasts and the RIS 
account for potential double counts and scheme interactions. For example, a RIS generally considers savings 
against a baseline that assumes an improvement in energy efficiency without any measures being taken, including 
improvements driven by international standards. 

5.2 Energy efficiency uptake scenarios 
This section describes the three energy efficiency uptake scenarios used for the 2013 NEFR forecasts. The three 
scenarios reflect the uncertainty about the number of new energy efficiency programs that will be implemented in 
the forecast period. They are the following: 

• The Slow Uptake scenario, which assumes no additional energy efficiency measures beyond those currently 
being implemented. 

• The Moderate Uptake scenario, which assumes all current energy efficiency programs and those currently 
being implemented remain. 

• The Rapid Uptake scenario, which assumes additional energy efficiency programs beyond those already 
approved are implemented. 

Refer to Table 1-1 to see how the three energy efficiency scenarios are used in the 2013 NEFR scenarios along 
with the uptake scenarios e.g., for rooftop PV.  

The three scenarios used in the 2013 NEFR use the Moderate Uptake energy efficiency scenario, as this is 
AEMO’s best estimate of future energy efficiency uptake. The Slow Uptake and Rapid Uptake scenarios are 
provided to support sensitivity studies of different energy efficiency uptake assumptions. 

5.3 Savings from energy efficiency policy measures 
The first step in developing the forecasts is to estimate the annual energy savings from energy efficiency policy 
measures from 2000 to 2033. 

Savings from two broad categories were estimated:  

• Equipment/appliances (interchangeable terms in this report), based on the study by George Wilkenfeld and 
Associates.36 

• Buildings, based on the study by Pitt & Sherry.37 

The NEFR forecasts consider electricity only, and this forecast accordingly does not include the gas demand 
impacts considered in the George Wilkenfeld and Associates and Pitt & Sherry reports. 

 
36  See Data Sources in Section 5.1. 
37  See Data Sources in Section 5.1. 
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5.3.1 Equipment energy efficiency savings 
The projected electrical energy savings for the NEM from equipment labelling and Minimum Energy Performance 
Standards (MEPS) (collectively referred to in some studies as E3 – Equipment Energy Efficiency), based on the 
work by George Wilkenfeld and Associates, are up to 42 TWh by 2030. More than half of this comes from programs 
already in place. 

The study does not provide a regional breakdown, and AEMO has determined regional values using the regional 
shares from an earlier, more comprehensive version of the report published in 2009. Potential savings from 
Western Australia and Northern Territory are excluded. 

The George Wilkenfeld and Associates study includes forecast values to 2029-30, which were extended to 2032-33 
for the NEFR using linear extrapolation from the last five years (2024-25 to 2029-30). 

The projected savings for the NEM are shown in Figure 5-4. This shows stable growth over the last five years, 
which supports the extrapolation providing a reasonable approximation of savings beyond 2030. 

Figure 5-4 — Appliance/equipment energy efficiency projected savings – E3 modelling 
categories 

 

The 2009 chiller MEPS program was excluded from the “MEPS & labelling regulations in place” category because it 
is also treated as an existing project in the building energy efficiency assessment (as part of the baseline for the 
Pitt & Sherry assessment). 
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5.3.2 Building energy efficiency savings 
Electrical energy savings from building-related energy efficiency measures were based on the Pitt & Sherry study. 
AEMO determined savings for the NEM based on the report’s savings for each state. Figure 5-5 shows these 
projected savings. 

Figure 5-5 — Building stock energy efficiency projected savings 

 

5.4 Calculating the NEFR energy efficiency forecast for 
annual energy 

As discussed in Section 5.1, the underlying econometric model (used to forecast the non-large industrial load) 
captures long-term trends, including efficiency effects. Substantial deviations from the long-term efficiency trend will 
not be captured by the model. Therefore, the NEFR energy efficiency forecast for annual energy is calculated from 
the difference between the actual energy efficiency savings expected in the forecast period (2013-33) as per 
Section 5.3, and the annual energy savings projected out to 2033 for the aggregate of all NEM regions based on 
the long-term efficiency trend observed in the regression period (2000-12). 

The long-term efficiency trend is approximated using a least-square fit for calendar years within the regression 
period (2000-12). This calendar year-based trend is extended into the forecast period (2013-33), which uses 
financial years, as AEMO considers the financial year and calendar year trends to be sufficiently similar. 

The calculated NEFR energy efficiency forecast for annual energy is disaggregated into forecasts for each region 
pro-rata based on the region-specific savings determined in the equipment and building stock studies. 
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Forecasts are developed for each of the three uptake scenarios described in Section 5.2. The Rapid Uptake 
scenario assumes all potential savings are made, both certain and probable. The Moderate Uptake scenario 
assumptions for equipment energy efficiency measures include only certain projects and are approximately 50% of 
the Rapid Uptake scenario forecast for both equipment and building stock.  

This building stock figure represents delays in the implementation of some programs (such as the phase-out of 
carbon-intensive water heaters), uncertainty about whether some programs will be implemented (such as 
Residential Mandatory Disclosure), and allows for non-compliance. 

No additional energy efficiency savings above the long-term trend are assumed for the Slow Uptake scenario. 

Energy efficiency forecasts for the measures that target equipment and building stock are shown in Figure 5-6 and 
Figure 5-7 respectively. 

Figure 5-6 — Energy efficiency forecasts for equipment energy efficiency measures 
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Figure 5-7 — Energy efficiency forecasts for building stock energy efficiency measures 

 

The savings shown in the two previous figures are as measured at the end-user premises. To calculate the post-
model adjustment to the energy forecast, which is transmission delivered demand, an allowance for distribution 
network losses needs to be added. This represents the additional savings in network losses if the energy saved 
would otherwise have been delivered from the transmission connection points to the end-users through the 
distribution networks.  

The losses used in this analysis are shown in Table 5-1. These are generally from recent losses reported to the 
Australian Energy Regulator (AER) by distribution companies as part of the Distribution Loss Factor approvals 
process.  

Table 5-1 — Estimated distribution losses in Australia (% of transmitted energy) 

NSW QLD SA TAS VIC 

4.8% 5.4% 6.1% 5.4% 5.2% 
 

Source: Reporting by network companies 

 

Appendix C shows the forecast energy efficiency post-model adjustments for annual energy for all three uptake 
scenarios.  
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5.5 Calculating the NEFR energy efficiency forecasts for 
maximum demand 

The NEFR regional energy efficiency forecasts for maximum demand (the impacts on summer and winter 
maximum demand) are calculated from the regional energy efficiency forecasts for annual energy described in 
Section 5.4, using the conservation load factor (CLF) approach. 

The CLF is the ratio of the average demand savings for one year, to savings at the time of that years’ system 
maximum demand. This is calculated as follows: 

CLF = [Annual energy savings (MWh)/8,760 hours]/savings at system maximum demand (MW) 

The CLF for appliances that operate constantly, such as refrigerators, is approximately one. Some appliances, 
such as air conditioners, are used heavily at the time of summer maximum demand, and generally have very low 
summer CLFs. Other appliances, such as off-peak electrical water heaters without an override function, never 
contribute to maximum demand. EES (2011)38 provides appliance-based CLFs for each NEM region. 

To take account of the wide diversity of appliances contributing to the forecast energy efficiency savings in Section 
5.4, the NEFR energy efficiency forecasts for maximum demand use regional summer and winter system load 
factors instead of individual appliance CLFs. This reduces potential overstatement of savings at times of maximum 
demand, as the large annual energy savings can lead to unrealistically large maximum demand savings if using 
very low CLFs. The regional load factors used for the NEFR energy efficiency forecasts are provided in Table 5-2. 

Table 5-2 — Regional load factors for maximum demand savings assessment 

2011-12 data Queensland 
New South 
Wales (incl. 

ACT) 
Victoria South 

Australia Tasmania Aggregated 
NEM regions 

Annual energy 
(MWh) 51,147,024 74,632,494 50,179,588 12,993,675 9,764,875 198,717,656 

Summer maximum 
demand (MW) 8,757 11,942 9,110 2,956 1,349 30,218 

Winter maximum 
demand (MW) 7,526 12,910 7,964 2,374 1,718 31,381 

Summer load 
factor 66.5% 71.1% 62.7% 50.0% 82.4% 74.9% 

Winter load factor 77.4% 65.8% 71.7% 62.3% 64.7% 72.1% 

 

Appendix C shows the forecast energy efficiency post-model adjustments for both summer and winter maximum 
demand for all three uptake scenarios.  

5.6 Modelling limitations and exclusions 
The energy efficiency forecasts are based on existing and planned policies and measures, and exclude any 
consideration of future programs than those discussed today. This is a conservative approach for a 20-year 

 
38  Energy Efficient Strategies. “The Value of Ceiling Insulation”, report to ICANZ, September 2011. Available http://icanz.org.au/wp-

content/uploads/import/pdf/2011_ICANZ_Report_-_V04__final_260911.pdf. Viewed 20 March 2013. 
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forecast, given that Pitt & Sherry39 considers the potential for additional savings to be large, some of which could 
be achieved by future policies. 

The two data sources40 used for the forecasts include all programs being run by the equipment energy efficiency 
branch and the building energy efficiency branch of the Department of Climate Change and Energy Efficiency 
DCCEE (now part of the Department of Resource, Energy and Tourism (DRET)). They do not include programs 
managed by other parts of DCCEE, such as the home insulation program, nor any programs run by other 
departments, such as the Energy Efficiency Opportunities program targeting industrial energy efficiency. Again, this 
is a conservative approach. 

The impacts of state-based measures are excluded to reduce potential double counting. Their exclusion does not 
materially affect the results as they are minor compared with the Commonwealth Government level measures 
considered. Rebound effects, where some of the cost savings from energy efficiency measures are spent on 
additional energy services, have not been taken into account in the NEFR forecasts. Lighting, space conditioning 
(air conditioning and heating) and hot water use are likely to have an element of rebound. EES (2011)41 estimated 
rebound to be approximately 15% (for each GWh of energy savings, 0.15 GWh of additional demand would occur 
leading to a net saving of 0.85 GWh).  

The interaction of electricity price response, energy efficiency, and the uptake of distributed generation such as 
rooftop PV, as they affect annual energy and maximum demand is not considered in these forecasts, and the 
potential overlap is not measured. 

5.7 Changes from the 2012 methodology 
The 2013 methodology incorporates changes from the 2012 methodology, which improve the transparency of the 
forecast approach and the quality of the results.  

A key change from the 2012 methodology is limiting potential energy savings to those from Commonwealth 
Government level measures. The impacts of state-based measures, which are minor compared with the 
Commonwealth Government level measures considered, are excluded to reduce potential double counting. 

The 2012 NEFR energy efficiency forecasts separately analysed household, commercial, and industrial energy 
efficiency forecasts. A range of information sources were used including the following: 

• Government reviews of the energy efficiency programs. 

• Consultant reports. 

• Australian Bureau of Statistics (ABS) demographic and electrical appliance statistics. 

• Economic forecasts developed by the National Institute of Economic and Industry Research (NIEIR). 

In contrast, the 2013 forecasts are based on two recent studies for DCCEE, providing consistent assumptions and 
information that specifically address the potential for energy efficiency savings for a large range of energy efficiency 
programs. 

The annual energy and maximum demand savings were separate estimates in 2012. The 2013 approach is based 
on regional system load factors, based on the 2010-11 year. 

In 2012, energy efficiency policy impacts were forecast for one base case scenario. This forecast was multiplied by 
assumed percentage factors to derive the forecasts for each of the NEFR scenarios. The percentage factor was 
mainly used to account for the historical trend in energy efficiency uptake. In 2013 the proportion of the potential 
savings forecast for each scenario is based on calculated outcomes rather than assumptions.  

 
39  See Section 5.1. 
40  See Section 5.1. 
41  See Note 38. 
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CHAPTER 6 - SMALL NON-SCHEDULED 
GENERATION 

6.1 Introduction 
This chapter provides the methodology used to develop annual energy and contribution to maximum demand 
forecasts for small non-scheduled generation. The contribution from small non-scheduled generation is subtracted 
from both the annual energy and maximum demand forecasts to calculate operational generation forecasts used in 
the supply–demand outlook. 

For a list of existing small non-scheduled generators used in these forecasts, see Appendix D. 

Forecasts are developed using a database of existing and possible future small non-scheduled generators. Based 
on the characteristics of historical small non-scheduled generation, forecasts of annual energy, and summer and 
winter contribution to maximum demand are constructed for each generator. Forecasts for each relevant AEMO 
scenario are developed using estimates of the likelihood of future small non-scheduled generators advancing to 
commissioning and start-up.   

6.2 Small non-scheduled generation scenarios 
Forecasts for low, medium and high scenarios are determined using the project status. This project status is 
determined using various sources, including AEMO’s generation information pages, company or ASX releases, or 
other official public sources. These project status categories are described as:  

• Category A: Project has previously generated, and is currently generating, electricity. 

• Category B: Project has advanced to a stage where a final investment decision has been made and the 
project is moving to, or currently in, construction phase. 

• Category C: A final investment decision has not been made, but the project is in the later stages of the 
development approval process. 

• Category D: A final investment decision has not been made, and the project is going through the 
intermediate stages of the approval process. 

The project status relates to each 2013 NEFR scenario as follows: 

2013 NEFR Scenario Related SNSG scenario Categories included  

High High Uptake Categories A, B, C and D 

Medium Moderate Uptake Categories A, B and C 

Low Sloow Uptake Categories A and B 

 

6.3 Calculating the NEFR small non-scheduled demand 
forecast for annual energy 

Using the project list, an historical and future capacity profile is developed based on project-by-project estimated 
start-up dates and installed capacities. Estimates of installed capacity for each project over the outlook period are 
assumed to be unchanging over time. 
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Capacity factors are estimated for each existing project using actual generation data and installed capacities of 
these generators. With appropriate weights favouring recent years, a capacity profile over the forecast period is 
subsequently constructed for each existing generator. 

Using the capacity factors implied from historical data, estimates of capacity factors to be applied to development 
projects are calculated. Estimates of capacity factors are found by averaging across generators from the same 
NEM region and generator class (fuel source). A capacity factor profile over the forecast period is subsequently 
constructed for potential new small non-scheduled generators. 

Using this capacity factor profile, combined with the reported capacities of future projects and expected future start-
up dates, a generation profile is constructed over the outlook period for each project. This profile is then filtered to 
accommodate each scenario described above. 

6.4 Calculating the NEFR small non-scheduled demand 
forecast for contribution to maximum demand 

Using the project list, an historical and future capacity profile is developed based on project-by-project estimated 
start-up dates and installed capacities. Estimates of installed capacity for each project over the outlook period are 
assumed to be unchanging over time. 

Annual half-hourly points of native maximum demand are identified for each NEM region, both for winter and 
summer maximum demand points. The contribution of demand from each existing small non-scheduled generator 
at each annual maximum demand reading is extracted from the historical trace. This comprises an historical profile 
of the contribution of small non-scheduled generation to maximum demand. 

Using this historical profile, annual factors of contribution to maximum demand can be determined for each project. 
These factors represent measured demand at regional system peak for each small non-scheduled generator, as a 
proportion of installed capacity for each of these projects. With appropriate weights favouring recent years, a profile 
of contribution to maximum demand factors over the forecast period is subsequently constructed for each existing 
generator.  

Using the factors implied from historical data, estimates of contribution to maximum demand factors to be applied 
to development projects are calculated. Estimates of contribution to maximum demand factors are found by 
averaging across generators from the same NEM region and generator class (fuel source). Contribution to 
maximum demand factors for small non-scheduled wind generators are determined using separate a AEMO 
analysis.42 A contribution to maximum demand factor profile over the forecast period is subsequently constructed 
for potential new small non-scheduled generators. 

Using this contribution to maximum demand factor profile, combined with the reported capacities of future projects 
and expected future start-up dates, a summer and winter maximum demand profile is constructed over the outlook 
period for each project. This profile is then adapted to accommodate each scenario described above. 

6.5 Modelling limitations and exclusions 
Forecasts of small non-scheduled generation are constructed by developing profiles of both existing generators 
and future developments based on publicly available evidence.  

While information on future projects planned for the early part of the forecast period is adequate, this information 
diminishes markedly in quality and quantity for projects scheduled for commissioning later into the forecast period.  

 
42 AEMO, Wind contribution to peak demand, July 2012. Available at http://aemo.com.au/Electricity/Planning/Related-Information/Wind-Contribution-

to--Peak-Demand.  
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Towards the end of the forecast period there is no information regarding the development of small non-scheduled 
generation projects. As such, small non-scheduled generation profiles for annual energy and contribution to 
maximum demand display little variation over the forecast period.  

6.6 Changes from the 2012 methodology 
The 2013 methodology incorporates changes which improve the transparency of the forecast approach and the 
quality of the results. Major changes include: 

• Construction of generator-by-generator forecasts based on a bottom-up appraisal of existing and future 
projects. 

• Greater use of historical data to inform capacity factors and contribution to maximum demand factors. 

• Increased disaggregation of generator characteristics to encompass specific NEM regions and 
technologies. 
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CHAPTER 7 - DEMAND-SIDE PARTICIPATION 

7.1 Introduction 
This chapter provides the methodology used to develop the demand-side participation (DSP) forecasts presented 
in Appendix D. 

The term DSP generally covers a wide range of short-term demand responses by end-users to price and/or 
reliability signals. In this report it specifically means: 

• Occasional DSP responding to different levels of high prices (market-driven response). 

• Occasional DSP responding to critical system conditions (reliability-driven response). 

It does not include daily or common changes in consumption such as electric hot water heaters being controlled by 
distribution companies or customer responses to time-of-use (TOU) tariff structures.  

The forecast excludes DSP from scheduled loads in the market, as these would be accounted for in the market 
clearing itself. However, it should be noted that at present the only scheduled loads are those associated with 
pumped storage facilities, which would not be pumping at times when DSP is needed. (DSP is required when 
prices are high; pumped storage facilities would always be generating—not pumping—at such times.) 

7.2 DSP methodology 
Forecasts of the available DSP for winter 2013 and summer 2013-14 are done separately for two different 
segments:  

• DSP from large industrial loads (based on the same loads as the large industrial load forecast discussed in 
Chapter 3).  

• DSP from the remaining load.  

The estimated DSP from large industrial loads is calculated based on historically observed responses at various 
price levels. This is explained in detail in Section 7.3. The estimated response from the remaining load is based on 
a survey of network businesses and market participants, and is explained in Section 7.4.  

These estimates are added together for each NEM region to give the total expected DSP available for different 
price levels. 

These totals are projected into the future for the three uptake scenarios: Slow uptake, moderate uptake and rapid 
uptake. The approach for these projections is explained in Section 7.6.  

The three scenarios used for the 2013 NEFR use the moderate uptake DSP scenario, as this is AEMO’s best 
estimate of DSP. The slow uptake and rapid uptake scenarios are provided to support sensitivity studies of different 
DSP assumptions. 

7.3 Estimate of current DSP from large industrial loads 
The expected DSP response (reduction in demand) for large industries was calculated based on half-hourly 
metered data from January 2002 to March 2013. The response was assessed for different regional wholesale price 
levels: 

• Prices above $1,000/MWh. 

• Prices above $2,500/MWh. 

• Prices above $5,000/MWh. 

• Prices above $7,500/MWh. 



 FORECASTING METHODOLOGY INFORMATION PAPER 

7-56 Demand-side participation © AEMO 2013 

The response was calculated as the difference between the demand observed in the hours where prices were as 
listed above, compared to the average daytime demand for the same day. For average daytime demand, only 
hours from 7:00 AM to 7:00 PM with prices below $1000/MWh were considered.  

From 7:00 AM to 7:00 PM is when high price events generally occur (as shown for Victoria in Figure 7-1); only 
these hours were used as night-time industrial demand tends to be slightly higher, driven by lower night-time 
electricity prices. Comparing against a daily average would have introduced a bias.  

Figure 7-1 — Time of day with prices above $1000/MWh in Victoria (Jan 2002 – Mar 2013) 

  

The DSP response for each high price occasion was calculated. The number of high-price events allowed for a 
reasonable estimate of the probability distribution of responses, as shown in Figure 7-2. This figure shows the 
historically observed probability of response in MW. For example, 90% of the time when prices have been or above 
1000/MWh, the historically observed DSP response has been at least 65 MW.  

This assessment is important given that DSP, at least from large industrial consumers, is a probable resource 
rather than a firm resource43; the response depends on a range of factors, such as their order book and flexibility of 
production. For these reasons, the same customer may respond differently at different times.  

 

 

 
43  It should be noted that DSP aggregators can and do provide “firm” DSP products by offering the aggregated response from a number of non-

firm resources, levelling out the uncertainty of individual responses.  
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Figure 7-2 — Probability of DSP response in NSW based on historical responses44 (Jan 2002 - 
Mar 2013) 

 

In general, all NEM regions showed only small differences between the responses observed at different price 
levels. As a result, it was decided only to include the lowest ($1000/MWh) and highest ($7500/MWh) response 
curves in the forecast.  

Due to the limited data available, it is not possible to reliably estimate the response for prices above $7500 using 
the same approach. For use in reliability assessments, discussed later in Section 7.5, DSP response during system 
crises—just before involuntary load shedding is required—had to be estimated. Prices would at that point equal the 
market price cap (MPC). AEMO assumed that DSP response during system crises would be equal to the response 
seen in the 90–98% interval of the $7500/MWh curve on Figure 7-2 (the  98–100% interval is excluded as it include 
outliers, including mandated load shedding).  

So the lowest expected response equals the plotted value for 90% (corresponding to 10% probability of 
exceedence) and the highest expected response equals the value for 98%, with the midpoint (50% probability of 
exceedence) equal to the 96% value.  

These regional estimates are higher than the forecast DSP responses reported by AEMO in previous years but 
consistent with actual responses seen in extreme events.45 

 
44  This excludes any historical response from the Kurri Kurri smelter.  
45  See Attachment 1 (pages 13 & 14) of AER’s submission to AEMC’s Power of Choice review - Direction paper, available on: 

http://www.aemc.gov.au/Media/docs/AER---120508-af5529b8-d12f-40d9-98f1-6546921c645c-0.PDF. Viewed 10 June 2013. 
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Following this assessment, the impact of large industrial load on the maximum demand forecast was evaluated to 
see if any historical price response might have interfered with the maximum demand forecast assessment. This 
was done to avoid any double counting of price impacts already accounted for in the maximum demand forecast.  

AEMO found that some degree of price response was present in the summer maximum demand forecast for 
Queensland and South Australia and that the DSP applied for these regions should therefore be lowered. The DSP 
forecast includes this minor adjustment (15 MW for Queensland and 10 MW for South Australia) to ensure the 
numbers applied are correct, but noting that the actual DSP available is the higher amount.  

7.4 Estimate of current DSP from smaller loads 
The DSP response from smaller loads is based on a survey undertaken by AEMO in early 2013 asking network 
companies (transmission and distribution), retailers and DSP aggregators about the DSP available to them for 
2013-14.  

For companies that did not respond, AEMO made estimates to the extent possible from data provided in the 
previous (2011) survey.  

AEMO also used the 2011 survey results to investigate and validate major differences between the 2013 and 2011 
survey responses. 

Some respondents provided seasonal data, indicating that DSP responses would be different depending on the 
season. Also, critical peak pricing type programs run in Victoria and New South Wales target summer peaks only 
and cannot be used in winter. The data allowed AEMO to estimate different DSP responses for summer and winter. 

Some retailers and aggregators provided information about the price at which DSP would be called. While this price 
varied, in general the numbers provided allowed AEMO to assume that all DSP responses by retailers and DSP 
aggregators had occurred at $1000/MWh or above.  

DSP from network companies is more often used to manage local peaks than system peaks. At very high prices, 
these are assumed to coincide, so AEMO assumed all network-driven DSP to be active at $7500/MWh or above. 

7.5 The combined DSP forecast for 2013-14 
AEMO added together the results from the large industrial analysis and survey responses to create the combined 
DSP forecast, which is presented in Appendix D.  

The DSP forecast is used differently by AEMO’s stakeholder, so multiple numbers are provided. The following 
explains how the different numbers should be used.  

7.5.1 Seasonal data 
Both summer and winter DSP forecasts are provided. Summer values should be used for the three summer months 
(December to February) plus March. Outside of these months, winter values should be used.   

7.5.2 Different price levels 
DSP responses at different price levels46 are provided for use in market simulations. The responses are based on 
50% probability of exceedance responses from large industrial loads, plus smaller load responses estimated at the 
given price level (as per Section 7.4).  

Reliability assessments (adequacy of supply), such as AEMO’s Electricity Statement of Opportunities and MT-
PASA, should use the market price cap (MPC) response level should be used. This represents the expected 
response by industry just before involuntary load shedding is required.  

 
46  Price levels are given in real $2012. 
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7.5.3 Probability of exceedence maximum demand forecasts 
For reliability assessments, it should be noted that numbers do not differ regardless of whether DSP is used to 
meet demand corresponding to the 10% POE or 50% POE maximum demand forecast. As DSP is mainly provided 
by temperature-insensitive sources, the same amount of DSP is assumed. 

7.6 Assumed growth of DSP in the future 
The combined forecast from Section 7.5 was projected into the future based on the following methodology. 

The base assumption is that the maximum demand forecast represents the full potential for DSP, with the actual 
DSP being the realised potential at any point in time.  

Each year a certain percentage of the DSP potential (as defined by the maximum demand) is converted into 
available DSP, representing more customers actively reducing demand at times of high prices either directly or 
through aggregators.  

AEMO developed three different DSP uptake scenarios (rapid, moderate and slow) using different assumed 
conversion rates. Within each uptake scenario, the same conversion rate was used across all NEM regions, with 
the exception of Tasmania, where half the conversion rate was applied given the lower incentives for developing 
DSP in Tasmania.  

AEMO assumed the following conversion rates: 

• Slow uptake:  0.05%  (0.025% for Tasmania) 

• Moderate uptake:  0.10% (0.050% for Tasmania) 

• Rapid uptake: 0.25% (0.125% for Tasmania) 

For example, a region with a stable maximum demand of 1000 MW over time and an initial DSP resource of 10 
MW (1% penetration), a conversion factor of 0.05% will add 0.5 MW of available DSP to the portfolio per year.  

Noted that for all three uptake scenarios, the assumed conversion rates result in DSP growing faster than 
maximum demand growth; this is supported by survey respondents’ comments around future expectations as well 
as the aspirations listed in Power of Choice review. 

In general, DSP remains less than 5% of the maximum demand across the NEM for the moderate uptake scenario. 
For comparison, the PJM47 market in the USA has DSP matching approximately 10% of maximum demand. This is 
considered very high by world standards.  

The estimated DSP by NEM region out to 2032-33 based on the assumptions above are presented in Appendix D.  

7.7 Modelling limitations and exclusions 
The DSP forecast is subject to the following limitations and exclusions: 

• The large industrial analysis is based on historical responses, which may change over time. With electricity 
prices rising, AEMO expects that DSP responses would be higher today than in previous years, so the DSP 
resource is potentially underestimated.  

• Survey responses were not received from all market participants. This could lead to an underestimation of the 
DSP resource.  

 
47  PJM is a market serving 60 million customers on the US East coast. In its 2012 capacity auction it procured 14,833 MW of demand response 

(and an additional 923 MW of energy efficiency). For comparison, PJM’s all-time peak at that time was 158,448 MW. Nearly 20,000 MW of 
demand response was offered in the auction, making the demand participation rate above 10%. See: www.pjm.com.  

http://www.pjm.com/
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• To ensure confidentiality of the capabilities and bidding behaviour of individual DSP resources, results have 
been presented in aggregate, without the level of detail available to AEMO. AEMO has sought to ensure that 
the aggregation has not introduced any bias into the forecast.  

• Estimating the growth (or decline) of the DSP resource into the future is difficult due to lack of data. The future 
DSP levels presented in Section 7.6 rather than being “forecast”, are made by assumptions guided by policy 
objectives and verified against achieved levels of DSP in other electricity markets.  

• The DSP forecast excludes any daily or common customer response (whether voluntary or though load control 
enabled by tariff type). There are significant developments in this area, both in terms of mandating “peak 
smart” capabilities of various appliance types, but also through mandating tariffs that incentivise customer 
response, such as TOU pricing or controlled tariff types.  

7.8 Changes from the 2012 methodology 
The 2013 methodology incorporates changes from the 2012 methodology, which improve the quality of the results. 
The key changes are: 

• DSP from large industrial loads are based on statistical analysis of metered data to give:  

− Better coverage (all large industrial loads have been considered this year). 

− Improved consistency (all loads are treated the same way). 

− Price-dependent responses.  

• The survey of small DSP loads included seasonal data. 

• Assumed growth of DSP into the future is based on a different methodology: 

− Start point is current maximum demand (potential for DSP) rather than current realised DSP. 

− Growth is based on an assumed conversion rate of loads contributing to maximum demand into DSP 
resources each year. 
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APPENDIX A - INPUT DATA, CHANGES AND 
ESTIMATED COMPONENTS 

Calculations for annual energy (native) and maximum demand calculations, transmission losses and auxiliary load 
used in the National Electricity Forecast Report (NEFR) use data which AEMO obtains from the following systems:  

System Data used for: 

Market Management System (MMS): 
the wholesale market system 

(containing the database WARE) 
used for operating the NEM, 

including dispatch, determining the 
regional spot price, and ancillary 

services. 

• Operational data for annual energy (native) and maximum 
demand calculations  

• Transmission losses 

• Auxiliary load 

Metering Settlements and Transfer 
Solution (MSATS): the retail market 

system (containing the database 
MDM) used for financial settlement of 

the NEM. 

• Individual small non-scheduled generators (SNSG) for annual 
energy (native) and maximum demand calculations 

• Industrial load 

 

Data for rooftop photovoltaic (PV) is estimated based on data provided by various government departments and 
distribution businesses. 

A.1 Changes to historical data 
Except for Metering Settlements and Transfer Solution (MSATS) data, which is subject to revisions as part of the 
settlement process, historical data should never change. While the individual component data used to create 
AEMO’s datasets does not change, certain components of this data have been included or excluded in response to 
inconsistencies revealed by detailed analysis.  

Changes to historical data compared to the 2012 NEFR are outlined below. 

A.1.1 All NEM regions 
Rooftop PV was revised up in the 2013 NEFR calculations due to a change in methodology and access to better 
data. This revision did not impact any other numbers, as rooftop PV is added to AEMO’s dataset to forecast total 
usage, and is then removed as a post-model adjustment. 

A.1.2 New South Wales 
AEMO identified that Tumut and Shoalhaven pumping loads were inadvertently treated as generation thereby 
increasing the level of generation in the 2012 dataset. This was removed, resulting in a 200–1000 GWh/year 
reduction in annual energy in New South Wales. 

Small non-scheduled generation (SNSG) was revised down due to a change in methodology, (see section 7.6) 
resulting in a 300–400 GWh/year reduction. This resulted in an increase in New Sales Wales operational demand. 

With the closure of Kurri Kurri last year, energy in the large industrial sector was significantly reduced. Given 
AEMO’s commitment to ensuring the confidentiality of individual customers’ energy use, AEMO increased the 
number of large industrial loads included in that sector by reclassifying light industrial customers from the 
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residential and commercial sector (defined as the energy remaining once large industrial has been removed). This 
resulted in a decrease in demand for the residential and commercial sector over the historical period. 

A.1.3 Queensland 
The energy produced by Wivenhoe Small Hydro (2–7 GWh/year) was inadvertently excluded last year, despite it 
being listed as included. This resulted in an increase to annual energy of 2-7 GWh/year in each of the historical 
years in Queensland. 

SNSG was revised up in some years and down in others due to changes in methodology (see section 7.6). This 
increased and decreased operational demand by the same amount (10–600 GWh/year). 

Large industrial demand was revised down 50–200 GWh/year. This was due to the removal of Wivenhoe pumping 
load from the large industrial demand sector. It was moved to the residential and commercial sector, increasing 
demand in that sector by the same amount. 

A.1.4 Victoria 
SNSG was revised down due to changes in methodology. This increased operational demand by 20–100 
GWh/year. 

Large industrial demand was revised up by 1,400–1,600 GWh due to a change in methodology around two large 
embedded generators in Victoria (Portland Wind Farm and Anglesea Power Station).  

Previously AEMO used the energy flowing through the transmission connection point as the industrial load 
amounts for Alcoa and Point Henry; this year, the demand for these loads was altered to include all energy 
generated by both Alcoa and Point Henry. These new values were confirmed with Alcoa and Point Henry. As a 
consequence, residential and commercial demand was revised down; residential and commercial demand is the 
residual energy after removing industrial demand, auxiliary load and transmission losses, so increases in the large 
industrial sector will see a corresponding drop in this sector.  

A.1.5 South Australia 
SNSG was revised down by 3-6 GWh/year due to changes in methodology. This resulted in operational demand 
being revised up by the same amount. 

Large industrial load was revised up by 9 GWh due to more accurate data being provided by industrial load 
customers.  

Residential and commercial load was revised down given it is the residual energy after removing industrial demand, 
auxiliary load, and transmission losses. 

A.1.6 Tasmania 
SNSG was revised down by 60–200 GWh/year due to changes in methodology. This resulted in operational 
demand being revised up by the same amount. 

A.2 Estimated components for the forecasts 
A.2.1 Transmission loss forecasts 
Transmission losses are determined as a percentage of large industrial and residential and commercial energy. 
AEMO assessed historical transmission losses against historical energy data in each region and found that the 
percentage of transmission losses as a percentage of energy consumption remained fairly constant. 

Table A-1 shows the historical transmission losses as a percentage of energy consumption in each NEM region.  
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Table A-1 — Historical transmission losses as a percentage of industrial and non-large 
industrial consumption  

 NSW QLD VIC SA TAS 

2000-01 2.15% 3.74% 3.16% 2.30% 2.22% 

2001-02 2.27% 4.32% 2.99% 2.01% 2.35% 

2002-03 2.22% 3.91% 3.67% 2.30% 2.38% 

2003-04 2.51% 3.76% 3.49% 2.44% 2.73% 

2004-05 2.59% 3.55% 3.18% 2.32% 2.26% 

2005-06 2.77% 3.35% 2.97% 2.34% 2.35% 

2006-07 2.75% 3.40% 2.68% 2.10% 2.50% 

2007-08 2.91% 3.33% 2.42% 1.88% 2.88% 

2008-09 2.67% 3.12% 2.66% 2.21% 2.85% 

2009-10 2.76% 3.14% 2.85% 2.35% 2.60% 

2010-11 2.46% 3.00% 2.87% 2.32% 2.51% 

2011-12 2.40% 3.02% 2.97% 2.37% 2.22% 

Average 2.54% 3.47% 2.99% 2.25% 2.35% 

 
As Table A-1 shows, the percentage of transmission losses remains fairly consistent over the years, as a result 
AEMO decided to apply an average percentage of transmission losses calculated from available historical data to 
forecast transmission losses going forward. The forecast for transmission losses is derived by using the historical 
average of transmission losses multiplied by the forecast for non-industrial and industrial energy consumption. This 
method of calculation is found to be more accurate compared to using a regression model, as was used in the 
2012 NEFR.  

A.2.2 Auxiliary loads forecast 
Auxiliary losses are forecast based on the expected auxiliary loads as a percentage of total generation. The 
expected percentage is determined by historical percentages and anticipated changes in the generation mix. This 
methodology is applied to annual energy forecasts as well as summer and winter maximum demand forecasts, 
allowing for the fact that auxiliary loads can be different in each case. 

Tables A-2 to A-4 show the expected estimated percentages for the annual energy and maximum demand 
forecasts following the historical percentages and anticipated changes in the generation mix. 

Table A-2 — Auxiliary loads expected percentages for the annual energy demand forecasts 

Annual Energy NSW QLD SA TAS VIC 

2013-14 5.23% 6.97% 4.46% 1.13% 8.60% 

2014-15 5.23% 6.97% 4.46% 1.13% 8.60% 

2015-16 5.23% 6.97% 4.46% 1.13% 7.00% 

2016-17 4.93% 6.84% 4.46% 1.13% 7.00% 

2017-18 4.93% 6.84% 2.23% 1.13% 7.00% 

2018-19 4.93% 6.84% 2.23% 0.87% 7.00% 

2019-20 4.93% 6.84% 2.23% 0.87% 5.95% 



 FORECASTING METHODOLOGY  

A-4 Input data, changes and estimated components © AEMO 2013 

Annual Energy NSW QLD SA TAS VIC 

2020-21 4.93% 6.84% 2.23% 0.87% 5.95% 

2021-22 4.93% 6.84% 2.23% 0.87% 5.95% 

2022-23 4.93% 6.84% 2.23% 0.87% 5.95% 

2023-24 4.93% 6.84% 2.23% 0.87% 5.95% 

2024-25 4.93% 6.84% 2.23% 0.87% 5.95% 

2025-26 5.07% 6.70% 2.81% 0.87% 5.95% 

2026-27 5.07% 6.70% 2.81% 0.87% 5.95% 

2027-28 5.07% 6.70% 2.81% 0.87% 5.95% 

2028-29 5.07% 6.70% 2.81% 0.87% 5.95% 

2029-30 5.07% 6.70% 2.81% 0.87% 5.95% 

2030-31 5.07% 6.70% 1.44% 1.22% 5.95% 

2031-32 5.07% 6.70% 1.44% 1.22% 5.95% 

 

Table A-3 — Auxiliary loads expected percentages for the summer maximum demand forecasts 

Summer MD NSW QLD SA TAS VIC 

2013-14 4.44% 5.39% 5.06% 1.34% 5.82% 

2014-15 4.44% 5.39% 5.06% 1.34% 5.82% 

2015-16 4.11% 5.39% 5.06% 1.34% 4.83% 

2016-17 4.11% 5.31% 5.06% 1.34% 4.83% 

2017-18 4.11% 5.31% 2.37% 1.34% 4.83% 

2018-19 4.11% 5.31% 2.37% 0.99% 4.83% 

2019-20 4.22% 5.31% 2.37% 0.99% 4.10% 

2020-21 4.22% 5.31% 2.37% 0.99% 4.10% 

2021-22 4.22% 5.31% 2.37% 0.99% 4.10% 

2022-23 4.22% 5.31% 2.37% 0.99% 4.10% 

2023-24 4.22% 5.31% 2.37% 0.99% 4.10% 

2024-25 4.22% 5.31% 2.37% 0.99% 4.10% 

2025-26 4.22% 5.20% 2.98% 0.99% 4.10% 

2026-27 4.22% 5.20% 2.98% 0.99% 4.10% 

2027-28 4.22% 5.20% 2.98% 0.99% 4.10% 

2028-29 4.22% 5.20% 2.98% 0.99% 4.10% 

2029-30 4.22% 5.20% 2.98% 0.99% 4.10% 

2030-31 4.22% 5.20% 1.52% 1.39% 4.10% 

2031-32 4.22% 5.20% 1.52% 1.39% 4.10% 
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Table A-4 — Auxiliary loads expected percentages for the summer maximum demand forecasts 

Winter MD NSW QLD SA TAS VIC 

2013 4.27% 5.69% 3.74% 0.76% 6.32% 

2014 4.27% 5.69% 3.74% 0.76% 6.32% 

2015 3.93% 5.69% 3.74% 0.76% 5.08% 

2016 3.93% 5.62% 3.74% 0.76% 5.08% 

2017 3.93% 5.62% 1.95% 0.76% 5.08% 

2018 3.93% 5.62% 1.95% 0.54% 5.08% 

2019 4.04% 5.62% 1.95% 0.54% 4.31% 

2020 4.04% 5.62% 1.95% 0.54% 4.31% 

2021 4.04% 5.62% 1.95% 0.54% 4.31% 

2022 4.04% 5.62% 1.95% 0.54% 4.31% 

2023 4.04% 5.62% 1.95% 0.54% 4.31% 

2024 4.04% 5.62% 1.95% 0.54% 4.31% 

2025 4.04% 5.51% 2.45% 0.54% 4.31% 

2026 4.04% 5.51% 2.45% 0.54% 4.31% 

2027 4.04% 5.51% 2.45% 0.54% 4.31% 

2028 4.04% 5.51% 2.45% 0.54% 4.31% 

2029 4.04% 5.51% 2.45% 0.54% 4.31% 

2030 4.04% 5.51% 1.25% 0.76% 4.31% 

2031 4.04% 5.51% 1.25% 0.76% 4.31% 
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APPENDIX B - ROOFTOP PHOTOVOLTAIC 
FORECAST 

This appendix specifies the forecast rooftop photovoltaic (PV) uptake scenarios based on the methodology 
described in Chapter 4. All 2013 NEFR scenarios used the moderate uptake scenario, but given the uncertainty 
around rooftop PV impacts in future years, rapid and slow uptake scenarios are also provided here to enable 
sensitivity studies.  

B.1 Annual energy 
The forecast NEM-wide rooftop PV post-model adjustments for annual energy are shown in Figure B-1. A regional 
breakdown is shown in Table B-1. 

Figure B-1 — Post-model adjustments by scenario measured at transmission level 

 

 

 

0

5,000

10,000

15,000

20,000

25,000

30,000

Po
st

-m
od

el
 a

dj
us

tm
en

t b
y 

sc
en

ar
io

 (G
W

h)

Rapid Moderate Slow Actual



 

© AEMO 2013 Rooftop photovoltaic forecast B-7 

Table B-1 — Post-model adjustments by state for each scenario (GWh/year) 

Region Uptake scenario 2012–13 2022–23 2032–33 

QLD Rapid 1,031 3,748 7,819 

QLD Moderate 1,023 2,440 4,916 

QLD Slow 1,018 1,772 2,535 

NSW Rapid 666 4,658 9,098 

NSW Moderate 659 3,059 5,935 

NSW Slow 653 1,659 2,746 

VIC Rapid 470 1,929 4,605 

VIC Moderate 465 1,294 2,672 

VIC Slow 462 851 1,298 

SA Rapid 501 1,558 2,650 

SA Moderate 497 1,119 2,010 

SA Slow 496 782 1,048 

TAS Rapid 39 274 582 

TAS Moderate 38 185 366 

TAS Slow 38 104 167.5 

NEM Rapid 2,707 12,166 24,754 

NEM Moderate 2,684 8,097 15,898 

NEM Slow 2,667 5,168 7,795 

B.2 Maximum demand 
The forecast regional rooftop PV post-model adjustments for summer and winter maximum demand are shown in 
Table B-2 and Table B-3 respectively. 

Table B-2 — Post-model adjustment to summer maximum demand forecast (MW) 

Region Scenario 2012–13 2022–23 2032–33 

QLD Rapid 215 999 1,995 

QLD Moderate 215 639 1,267 

QLD Slow 215 452 645 

NSW Rapid 166 1,302 2,408 

NSW Moderate 166 843 1,586 

NSW Slow 166 448 734 

VIC Rapid 103 662 1,538 

VIC Moderate 103 438 888 

VIC Slow 103 281 426 

SA Rapid 141 484 782 
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Region Scenario 2012–13 2022–23 2032–33 

SA Moderate 141 342 601 

SA Slow 141 232 313 

TAS Rapid 6 37 75 

TAS Moderate 6 25 47 

TAS Slow 6 14 22 

Table B-3 — Post-model adjustment to winter maximum demand forecast (MW) 

 

Region Scenario 2013 2023 2033 

QLD Rapid - - - 

QLD Moderate - - - 

QLD Slow - - - 

NSW Rapid - - - 

NSW Moderate - - - 

NSW Slow - - - 

VIC Rapid 4 13 30 

VIC Moderate 4 9 17 

VIC Slow 3 5 8 

SA Rapid - - - 

SA Moderate - - - 

SA Slow - - - 

TAS Rapid - - - 

TAS Moderate - - - 

TAS Slow - - - 
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APPENDIX C - ENERGY EFFICIENCY FORECAST 

This appendix specifies the forecast energy efficiency uptake scenarios based on the methodology described in 
Chapter 5. All the 2013 NEFR scenarios used the moderate energy efficiency uptake scenario, but given the 
uncertainty around energy efficiency impacts in future years, a rapid and slow uptake scenario are also provided in 
this appendix to enable sensitivity studies.  

C.1 Annual energy 
The forecast NEM-wide energy efficiency post-model adjustments for annual energy are shown in Figure C-1 . A 
regional breakdown is shown in Table C-1. 

The NEFR forecast for 2012–13 annual energy is based on historical observed demand for half the period and 
estimated demand for the remaining half. The post-model adjustment should only be applied to the latter. 
Therefore, the 2012–13 estimate has been reduced by 50% compared to the estimate for the full financial year. 

Figure C-1— Post-model adjustments by scenario measured at transmission level 
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Table C-1 — Post-model adjustments by state for each scenario (GWh/year) 

Region Uptake scenario 2012–13 2022–23 2032–33 

QLD Rapid 387 6,170 9,036 

QLD Moderate 304 3,168 3,977 

QLD Slow - - - 

NSW Rapid 533 8,819 12,681 

NSW Moderate 425 4,528 5,568 

NSW Slow - - - 

VIC Rapid 369 5,608 8,337 

VIC Moderate 276 2,872 3,722 

VIC Slow - - - 

SA Rapid 110 1,770 2,606 

SA Moderate 84 907 1,161 

SA Slow - - - 

TAS Rapid 46 776 1,091 

TAS Moderate 37 399 475 

TAS Slow - - - 

NEM Rapid 1,445 23,143 33,751 

NEM Moderate 1,127 11,874 14,903 

NEM Slow - - - 

C.2 Maximum demand 
The forecast regional energy efficiency post-model adjustments for summer and winter maximum demand are 
shown in Table C-2 and Table C-3 respectively. 

Both NEFR summer and winter maximum demand forecast for 2012–13 is assumed to capture all energy efficiency 
impacts and the values have been set to zero.  

Table C-2 — Post-model adjustment to summer maximum demand forecast (MW) 

Region Scenario 2012–13 2022–23 2032–33 

QLD Rapid - 1,059 1,551 

QLD Moderate - 544 683 

QLD Slow - - - 

NSW Rapid - 1,415 2,035 

NSW Moderate - 726 893 

NSW Slow - - - 

VIC Rapid - 1,021 1,518 

VIC Moderate - 523 678 
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Region Scenario 2012–13 2022–23 2032–33 

VIC Slow - - - 

SA Rapid - 404 594 

SA Moderate - 207 265 

SA Slow - - - 

TAS Rapid - 108 151 

TAS Moderate - 55 66 

TAS Slow - - - 

 

Table C-3 — Post-model adjustment to winter maximum demand forecast (MW) 

 

Region Scenario 2013 2022–23 2032–33 

QLD Rapid - 910 1,333 

QLD Moderate - 467 587 

QLD Slow - - - 

NSW Rapid - 1,530 2,200 

NSW Moderate - 785 966 

NSW Slow - - - 

VIC Rapid - 893 1,327 

VIC Moderate - 457 592 

VIC Slow - - - 

SA Rapid - 324 477 

SA Moderate - 166 213 

SA Slow - - - 

TAS Rapid - 137 193 

TAS Moderate - 70 84 

TAS Slow - - - 
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APPENDIX D -  DEMAND-SIDE PARTICIPATION 
FORECAST 

This appendix presents the forecast values for demand-side participation (DSP) based on the methodology 
presented in Chapter 7. These should be read in conjunction with the guidance provide in Section 7.5. 

D.1 Estimate of current DSP capacity 
The following tables show a summary of estimated DSP capacity for the 2013 winter and 2013–14 summer 
respectively by price band. MPC refers to electricity wholesale prices reaching the market price cap (MPC), which 
is the maximum spot price allowed in the NEM, as stipulated in the National Electricity Rules.1 

Commentary about the regional numbers is provided in the following sections.  

Table D-1 — Expected DSP (MW), winter 2013 

  QLD NSW VIC SA TAS 

Prices > $1000/MWh 60.8 16.8 93.1 36.8 3.0 

Prices > $7500/MWh 70.8 38.8 167.1 39.8 36.0 

Prices = MPC 132.5 147.9 347.8 53.1 65.0 
 

Table D-2 — Expected DSP (MW), summer 2013–14 

  QLD1 NSW VIC SA2 TAS 

Prices > $1000/MWh 45.8 16.8 113.1 29.8 3.0 

Prices > $7500/MWh 55.8 43.8 241.2 35.8 36.0 

Prices = MPC 117.5 152.9 421.9 62.4 65.0 
1  The actual DSP has been estimated to be 15 MW higher, but this amount has already been accounted for in AEMO's summer maximum 

demand forecast.  
2 The actual DSP has been estimated to be 10 MW higher, but this amount has already been accounted for in AEMO's summer maximum 

demand forecast.   

 
1 As of July 2013, this level is $13,100/MWh. See: http://www.aemc.gov.au/electricity/guidelines-and-standards.html 
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D.2 Queensland DSP to 2032–33 
The following figures show the assumed growth in DSP for the moderate uptake scenario.  

The estimated DSP for 2013–14 is significantly higher than estimated in the 2012 NEFR. Up to 133 MW of DSP is 
forecast to be available in 2013–14 at times when the electricity wholesale price reaches market price cap (MPC). 

This increase in forecast DSP is mainly due to a more comprehensive study of the response of large industrial 
loads at time of high prices. 

DSP available at lower prices are more in line with last year's forecast. 

Figure D-1 — Assumed DSP growth in Queensland, winter 

 

Figure D-2 — Assumed DSP growth in Queensland, summer 
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D.3 New South Wales (incl. ACT) DSP to 2032–33 
The following figures show the assumed growth in DSP in New South Wales (including the Australian Capital 
Territory) for the moderate uptake scenario.  

The estimated DSP for 2013–14 is significantly higher than estimated in the 2012 NEFR. Up to 153 MW of DSP is 
forecast to be available in 2013–14 at times when the electricity wholesale price reaches market price cap (MPC). 

This increase in forecast DSP is mainly due to a more comprehensive study of the response of large industrial 
loads at time of high prices. 

DSP available at lower prices are more in line with last year's forecast. 

Figure D-3 — Assumed DSP growth in New South Wales (incl. ACT), winter 

 

Figure D-4 — Assumed DSP growth in New South Wales (incl. ACT), summer 
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D.4 Victorian DSP to 2032–33 
The following figures show the assumed growth in DSP in Victoria for the moderate uptake scenario.  

The estimated DSP for 2013–14 is significantly higher than estimated in the 2012 NEFR. Up to 422 MW of DSP is 
forecast to be available in 2013–14 at times when the electricity wholesale price reaches market price cap (MPC) 

This increase in forecast DSP is mainly due to a more comprehensive study of the response of large industrial 
loads at time of high prices. 

DSP available at lower prices are more in line with last year's forecast. 

Figure D-5 — Assumed DSP growth in Victoria, winter 

 

Figure D-6 — Assumed DSP growth in Victoria, summer 

 

0

100

200

300

400

500

600

700

DS
P 

(in
 M

W
)

DSP - Moderate uptake - Winter

DSP at prices >$1000/MWh DSP at prices >$7500/MWh DSP at prices = MPC

0

100

200

300

400

500

600

700

DS
P 

(in
 M

W
)

DSP - Moderate uptake - Summer

DSP at prices >$1000/MWh DSP at prices >$7500/MWh DSP at prices = MPC



 FORECASTING METHODOLOGY  

D-16 Demand-side participation forecast © AEMO 2013 

D.5 South Australian DSP to 2032–33 
The following figures show the assumed growth in DSP in South Australia for the moderate uptake scenario.  

The estimated DSP for 2013–14 cannot be compared with previous estimates as it has not previously been 
reported independently.  

There is a clear difference in the available capacity in summer and winter, with a substantial amount of capacity 
available during summer only.  

Figure D-7 — Assumed DSP growth in South Australia, winter 

 

Figure D-8 — Assumed DSP growth in South Australia, summer 
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D.6 Tasmanian DSP to 2032–33 
The following figures show the assumed growth in DSP in Tasmania for the moderate uptake scenario.  

The results differ from earlier years as DSP has not previously been reported in Tasmania; however, it should be 
noted that the amount of DSP available is negligible when electricity wholesale prices are below $7,500/MWh.  

Figure D-9 — Assumed DSP growth in Tasmania, winter 

 

Figure D-10 — Assumed DSP growth in Tasmania, summer 
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APPENDIX E - GENERATORS INCLUDED 

This appendix provides two lists of power stations for each region: 

• The first lists the power stations used to develop operational demand forecasts. 

• The second lists the power stations used to develop annual energy demand forecasts. 

These lists separately identify the scheduled, semi-scheduled and small non-scheduled generators that contribute 
to these forecasts. 

E.1 Queensland 
E.1.1  Power stations used for operational demand forecasts for Queensland 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Barcaldine 37 OCGT Natural Gas Pipeline Scheduled 

Barron Gorge 66 Run of River Water Scheduled 

Braemar 504 OCGT Coal Seam Methane Scheduled 

Braemar 2 519 OCGT Coal Seam Methane Scheduled 

Callide B 700 Steam Sub Critical Black Coal Scheduled 

Callide Power Plant 950 Steam Super Critical Black Coal Scheduled 

Collinsville 190 Steam Sub Critical Black Coal Scheduled 

Condamine A 144 CCGT Coal Seam Methane Scheduled 

Darling Downs 644 CCGT Coal Seam Methane Scheduled 

Gladstone 1,680 Steam Sub Critical Black Coal Scheduled 

Kareeya 88 Run of River Water Scheduled 

Kogan Creek 744 Steam Super Critical Black Coal Scheduled 

Mackay Gas Turbine 34 OCGT Diesel Scheduled 

Millmerran Power Plant 856 Steam Super Critical Black Coal Scheduled 

Mt Stuart 424 OCGT Kerosine Aviation fuel used 
for stationary energy - avtur Scheduled 

Oakey 282 OCGT Diesel Scheduled 

Roma Gas Turbine 80 OCGT Natural Gas Pipeline Scheduled 

Stanwell 1,460 Steam Sub Critical Black Coal Scheduled 

Swanbank B 250 Steam Sub Critical Black Coal Scheduled 

Swanbank E GT 385 CCGT Coal Seam Methane Scheduled 

Tarong 1,400 Steam Sub Critical Black Coal Scheduled 

Tarong North 450 Steam Super Critical Black Coal Scheduled 

Townsville Gas Turbine (Yabulu) 242 CCGT Coal Seam Methane Scheduled 

Wivenhoe 500 Pump Storage Water Scheduled 

Yarwun 154 CCGT Natural Gas Pipeline Non 
scheduled 
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E.1.2  Power stations used for annual energy forecasts for Queensland 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Barcaldine 55 CCGT Natural Gas Pipeline Scheduled 

Barron Gorge 66 Run of River Water Scheduled 

Braemar 504 OCGT Coal Seam Methane Scheduled 

Braemar 2 519 OCGT Coal Seam Methane Scheduled 

Callide A4 30 Steam Sub Critical Black Coal Non 
scheduled 

Callide B 700 Steam Sub Critical Black Coal Scheduled 

Callide Power Plant 840 Steam Super Critical Black Coal Scheduled 

Collinsville 190 Steam Sub Critical Black Coal Scheduled 

Condamine A 144 CCGT Coal Seam Methane Scheduled 

Daandine 30 Compression Reciprocating 
Engine Coal Seam Methane Non 

scheduled 

Darling Downs 644 CCGT Coal Seam Methane Scheduled 

German Creek 31.8 Spark Ignition 
Reciprocating Engine Waste Coal Mine Gas Non 

scheduled 

Gladstone 1,680 Steam Sub Critical Black Coal Scheduled 

Invicta 50.3 Steam Sub Critical Bagasse Non 
scheduled 

ISIS Central Sugar Mill Cogen 25 Steam Sub Critical Bagasse Non 
scheduled 

Kareeya 88 Run of River Water Scheduled 

Kogan Creek 744 Steam Super Critical Black Coal Scheduled 

KRC Cogen 5 Steam Sub Critical Natural Gas Pipeline Non 
scheduled 

Mackay Gas Turbine 34 OCGT Diesel Scheduled 

Millmerran Power Plant 856 Steam Super Critical Black Coal Scheduled 

Moranbah North PS 45.6 Spark Ignition 
Reciprocating Engine Waste Coal Mine Gas Non 

scheduled 

Moranbah PS 12 Compression Reciprocating 
Engine Waste Coal Mine Gas Non 

scheduled 

Mt Stuart 424 OCGT Kerosine Aviation fuel used 
for stationary energy - avtur Scheduled 

Oakey 282 OCGT Diesel Scheduled 

Oaky Creek 20 Compression Reciprocating 
Engine Coal Seam Methane Non 

scheduled 

Pioneer 67.8 Steam Sub Critical Bagasse Non 
scheduled 

Rochedale Renewable Energy 4.2 Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas 

Non 
scheduled 

Rocky Point 30 Steam Sub Critical Green and air dried wood Non 
scheduled 

Roghan Road LFG Plant 1 Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas 

Non 
scheduled 

Roma Gas Turbine 80 OCGT Natural Gas Pipeline Scheduled 

Somerset Dam 4 Run of river Water Non 
scheduled 

Southbank Institute of Tech 1 OCGT Diesel Non 
scheduled 

Stanwell 1,460 Steam Sub Critical Black Coal Scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Suncoast Gold Macadamias 1.5 Steam Sub Critical Macadamia Nut Shells Non 
scheduled 

Swanbank B 250 Steam Sub Critical Black Coal Scheduled 

Swanbank E GT 385 CCGT Coal Seam Methane Scheduled 

Tarong 1,400 Steam Sub Critical Black Coal Scheduled 

Tarong North 450 Steam Super Critical Black Coal Scheduled 

Townsville Gas Turbine (Yabulu) 242 CCGT Coal Seam Methane Scheduled 

Veolia Ti Tree Bioreactor 3.3 Compression Reciprocating 
Engine 

Landfill Methane / Landfill 
Gas 

Non 
scheduled 

Victoria Mill 24 Steam Sub Critical Bagasse Non 
scheduled 

Whitwood Road Renewable 1.1 Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas 

Non 
scheduled 

Windy Hill 12 Wind - Onshore Wind Non 
scheduled 

Wivenhoe 500 Pump Storage Water Scheduled 

Wivenhoe Small Hydro 4.5 Run of river Water Non 
scheduled 

Yarwun 154 CCGT Natural Gas Pipeline Non 
scheduled 

 

E.2 New South Wales 
E.2.1  Power stations used for operational demand forecasts for New South Wales 

(including ACT) 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Bayswater 2,640 Steam Sub Critical Black Coal Scheduled 

Blowering 70 Hydro - Gravity Water Scheduled 

Capital Wind Farm 140.7 Wind - Onshore Wind Non 
scheduled 

Collongra 724 OCGT Natural Gas Pipeline Scheduled 

Cullerin Range Wind Farm 30 Wind - Onshore Wind Non 
scheduled 

Eraring 2,880 Steam Sub Critical Black Coal Scheduled 

Gunning Wind Farm 46.5 Wind - Onshore Wind Semi 
scheduled 

Guthega 60 Hydro - Gravity Water Scheduled 

Hume NSW 29 Hydro - Gravity Water Scheduled 

Hunter Valley GT 50 OCGT Fuel Oil Scheduled 

Liddell 2,000 Steam Sub Critical Black Coal Scheduled 

Mt Piper 1,400 Steam Sub Critical Black Coal Scheduled 

Munmorah 600 Steam Sub Critical Black Coal Scheduled 

Redbank 143.8 Steam Sub Critical Black Coal Scheduled 

Shoalhaven 240 Hydro - Gravity Water Scheduled 

Smithfield Energy Facility 170.9 CCGT Natural Gas Pipeline Scheduled 

Tallawarra 420 CCGT Natural Gas Pipeline Scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Tumut 3 1,500 Hydro - Gravity Water Scheduled 

Upper Tumut 616 Hydro - Gravity Water Scheduled 

Uranquinty 664 OCGT Natural Gas Pipeline Scheduled 

Vales Point B 1,320 Steam Sub Critical Black Coal Scheduled 

Wallerawang C 1,000 Steam Sub Critical Black Coal Scheduled 

Woodlawn Wind Farm 48.3 Wind - Onshore Wind semi 
scheduled 

 

E.2.2 Power stations used for annual energy forecasts for New South Wales 
(including ACT) 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Awaba PS 1.1 Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas 

Non 
scheduled 

Bankstown Sports Club 2.1 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Bayswater 2,640 Steam Sub Critical Black Coal Scheduled 

Blowering 70 Hydro - Gravity Water Scheduled 

Broadwater Power Station 30 Steam Sub Critical Bagasse Non 
scheduled 

Broken Hill GT 50 Diesel OCGT Non 
scheduled 

Brown Mountain 5.4 Hydro - Gravity Water Non 
scheduled 

Burrendong Hydro 18 Hydro - Gravity Water Non 
scheduled 

Burrinjuck PS 27.2 Hydro - Gravity Water Non 
scheduled 

Capital Wind Farm 140.7 Wind - Onshore Wind Non 
scheduled 

Colongra 724 OCGT Natural Gas Pipeline Scheduled 

Condong PS 30 Steam Sub Critical Bagasse Non 
scheduled 

Copeton Hydro 20 Hydro - Gravity Water Non 
scheduled 

Cullerin Range Wind Farm 30 Wind - Onshore Wind Non 
scheduled 

EarthPower Biomass 3.9 Spark Ignition 
Reciprocating Engine 

Biomass recycled municipal 
and industrial materials 

Non 
scheduled 

Eastern Creek PS 5 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas 

Non 
scheduled 

Eraring 2,880 Steam Sub Critical Black Coal Scheduled 

Glenbawn Hydro 5 Hydro - Gravity Water Non 
scheduled 

Glennies Creek PS 13 Compression Reciprocating 
Engine Coal Seam Methane Non 

scheduled 

Grange Avenue 2 Compression Reciprocating 
Engine 

Landfill Methane/Landfill 
Gas 

Non 
scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Gunning Wind Farm 46.5 Wind - Onshore Wind Semi 
scheduled 

Guthega 60 Hydro - Gravity Water Scheduled 

Hume NSW 29 Hydro - Gravity Water Scheduled 

Hunter Valley GT 50 OCGT Fuel Oil Scheduled 

Jacks Gully 2.3 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas 

Non 
scheduled 

Jindabyne 1.1 Hydro - Gravity Water Non 
scheduled 

Jounama 14.4 Hydro - Gravity Water Non 
scheduled 

Keepit 6.5 Hydro - Gravity Water Non 
scheduled 

Liddell 2,000 Steam Sub Critical Black Coal Scheduled 

Mt Piper 1,400 Steam Sub Critical Black Coal Scheduled 

Munmorah 600 Steam Sub Critical Black Coal Scheduled 

Nine Network Willoughby 3.2 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Pindari Hydro 5.7 Hydro - Gravity Water Non 
scheduled 

Redbank 143.8 Steam Sub Critical Black Coal Scheduled 

Shoalhaven 240 Hydro - Gravity Water Scheduled 

Smithfield Energy Facility 170.9 CCGT Natural Gas Pipeline Scheduled 

St Georges League Club 1.5 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Tallawarra 420 CCGT Natural Gas Pipeline Scheduled 

Teralba 3 Compression Reciprocating 
Engine Waste Coal Mine Gas Non 

scheduled 

Tumut 3 1,500 Hydro - Gravity Water Scheduled 

Upper Tumut 720 Hydro - Gravity Water Scheduled 

Uranquinty 664 OCGT Natural Gas Pipeline Scheduled 

Vales Point B 1,320 Steam Sub Critical Black Coal Scheduled 

Wallerawang C 1,000 Steam Sub Critical Black Coal Scheduled 

West Illawarra Leagues Club 1 Compression Reciprocating 
Engine Diesel Non 

scheduled 

West Nowra Landfill 1 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas 

Non 
scheduled 

Western Suburbs League Club 1.3 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Whytes Gully 2.5 Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas 

Non 
scheduled 

Wilga Park 10 Spark Ignition 
Reciprocating Engine Natural Gas - Unprocessed Non 

scheduled 

Woodlawn Bioreactor 4.3 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas 

Non 
scheduled 

Woodlawn Wind Farm 48.3 Wind - Onshore Wind semi 
scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Wyangala A 20 Hydro - Gravity Water Non 
scheduled 

Wyangala B 4 Hydro - Gravity Water Non 
scheduled 

E.3 South Australia 
E.3.1 Power stations used for operational demand forecasts for South Australia 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Canunda Wind Farm 46 Wind - Onshore Wind Non 
scheduled 

Cathedral Rocks Wind Farm 66 Wind - Onshore Wind Non 
scheduled 

Clements Gap Wind Farm 56.7 Wind - Onshore Wind semi 
scheduled 

Dry Creek Gas Turbine Station 156 OCGT Natural Gas Pipeline Scheduled 

Hallett 1 (Brown Hill) 94.5 Wind - Onshore Wind semi 
scheduled 

Hallett 2 (Hallett Hill) 71.4 Wind - Onshore Wind semi 
scheduled 

Hallett 4 (Nth Brown Hill) 132.3 Wind - Onshore Wind semi 
scheduled 

Hallett 5 (The Bluff) 52.5 Wind - Onshore Wind Semi 
scheduled 

Hallett GT 228.3 OCGT Natural Gas Pipeline Scheduled 

Ladbroke Grove Power Station 80 OCGT Natural Gas Pipeline Scheduled 

Lake Bonney Stage 2 Wind Farm 159 Wind - Onshore Wind Semi 
scheduled 

Lake Bonney Stage 3 Wind Farm 39 Wind - Onshore Wind Semi 
scheduled 

Lake Bonney Wind Farm 80.5 Wind - Onshore Wind Non 
scheduled 

Mintaro Gas Turbine Station 90 OCGT Natural Gas Pipeline Scheduled 

Mt Millar Wind Farm 70 Wind - Onshore Wind Non 
scheduled 

Northern Power Station 530 Steam Sub Critical Brown Coal Scheduled 
Osborne Power Station 180 CCGT Natural Gas Pipeline Scheduled 

Pelican Point Power Station 478 CCGT Natural Gas Pipeline Scheduled 

Playford B Power Station 240 Steam Sub Critical Brown Coal Scheduled 

Port Lincoln Gas Turbine 73.5 OCGT Diesel Scheduled 

Quarantine Power Station 224 OCGT Natural Gas Pipeline Scheduled 

Snowtown Wind Farm Units 1 and 47 98.7 Wind - Onshore Wind Semi 
scheduled 

Snuggery Power Station 63 OCGT Diesel Scheduled 

Starfish Hill Wind Farm 34.5 Wind - Onshore Wind Non 
scheduled 

Torrens Island A 480 Steam Sub Critical Natural Gas Pipeline Scheduled 

Torrens Island B 800 Steam Sub Critical Natural Gas Pipeline Scheduled 

Waterloo Wind Farm 111 Wind - Onshore Wind Semi 
scheduled 

Wattle Point Wind Farm 90.8 Wind - Onshore Wind Non 
scheduled 
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E.3.2  Power stations used for annual energy forecasts for South Australia 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Amcor Glass 4.02 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Angaston 50 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Canunda Wind Farm 46 Wind - Onshore Wind Non 
scheduled 

Cathedral Rocks Wind Farm 66 Wind - Onshore Wind Non 
scheduled 

Clements Gap Wind Farm 56.7 Wind - Onshore Wind Semi 
scheduled 

Dry Creek Gas Turbine Station 156 OCGT Natural Gas Pipeline Scheduled 

Hallett 1 (Brown Hill) 94.5 Wind - Onshore Wind Semi 
scheduled 

Hallett 2 (Hallett Hill) 71.4 Wind - Onshore Wind Semi 
scheduled 

Hallett 4 (Nth Brown Hill) 132.3 Wind - Onshore Wind Semi 
scheduled 

Hallett 5 (The Bluff) 52.5 Wind - Onshore Wind Semi 
scheduled 

Hallett GT 228.3 OCGT Natural Gas Pipeline Scheduled 

Ladbroke Grove Power Station 80 OCGT Natural Gas Pipeline Scheduled 

Lake Bonney Stage 2 Wind Farm 159 Wind - Onshore Wind Semi 
scheduled 

Lake Bonney Stage 3 Wind Farm 39 Wind - Onshore Wind Semi 
scheduled 

Lake Bonney Wind Farm 80.5 Wind - Onshore Wind Non 
scheduled 

Lonsdale 20.7 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Mintaro Gas Turbine Station 90 OCGT Natural Gas Pipeline Scheduled 

Mt Millar Wind Farm 70 Wind - Onshore Wind Non 
scheduled 

Northern Power Station 530 Steam Sub Critical Brown Coal Scheduled 

Osborne Power Station 180 CCGT Natural Gas Pipeline Scheduled 

Pelican Point Power Station 478 CCGT Natural Gas Pipeline Scheduled 

Playford B Power Station 240 Steam Sub Critical Brown Coal Scheduled 

Port Lincoln Gas Turbine 73.5 OCGT Diesel Scheduled 

Pt Stanvac 58 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Quarantine Power Station 224 OCGT Natural Gas Pipeline Scheduled 

Snowtown Wind Farm Units 1 And 47 98.7 Wind - Onshore Wind Semi 
scheduled 

Snuggery Power Station 63 OCGT Diesel Scheduled 

Starfish Hill Wind Farm 34.5 Wind - Onshore Wind Non 
scheduled 

Tatiara 0.5 Compression Reciprocating 
Engine Diesel Non 

scheduled 

Terminal Storage Mini Hydro 2.5 Hydro - Gravity Water Non 
scheduled 

Torrens Island A 480 Steam Sub Critical Natural Gas Pipeline Scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch 

type 

Torrens Island B 800 Steam Sub Critical Natural Gas Pipeline Scheduled 

Waterloo Wind Farm 111 Wind - Onshore Wind Semi 
scheduled 

Wattle Point Wind Farm 90.8 Wind - Onshore Wind Non 
scheduled 

E.4 Victoria 
E.4.1  Power stations used for operational demand forecasts for Victoria 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Anglesea 150 Steam Sub Critical Brown Coal Non scheduled 

Bairnsdale 94 OCGT Natural Gas Pipeline Scheduled 

Bogong/McKay 300 Hydro - Gravity Water Scheduled 

Challicum Hills Wind Farm 52.5 Wind - Onshore Wind Non scheduled 

Dartmouth 185 Hydro - Gravity Water Scheduled 

Eildon 135 Hydro - Gravity Water Scheduled 

Energy Brix Complex (Morwell) 189 Steam Sub Critical Brown Coal Scheduled 

Hazelwood 1,600 Steam Sub Critical Brown Coal Scheduled 

Hume VIC 29 Hydro - Gravity Water Scheduled 

Jeeralang A 212 OCGT Natural Gas Pipeline Scheduled 

Jeeralang B 228 OCGT Natural Gas Pipeline Scheduled 

Laverton North 312 OCGT Natural Gas Pipeline Scheduled 

Loy Yang A 2,180 Steam Sub Critical Brown Coal Scheduled 

Loy Yang B 1,000 Steam Sub Critical Brown Coal Scheduled 

Macarthur Wind Farm 420 Wind - Onshore Wind Semi 
scheduled 

Mortlake Units 566 OCGT Natural Gas Pipeline Scheduled 

Murray 1 950 Hydro - Gravity Water Scheduled 

Murray 2 552 Hydro - Gravity Water Scheduled 

Newport 500 Steam Sub Critical Natural Gas Pipeline Scheduled 

Oaklands Hill Wind Farm 67.2 Wind - Onshore Wind Semi 
scheduled 

Portland Wind Farm 102 Wind - Onshore Wind Non scheduled 

Somerton 160 OCGT Natural Gas Pipeline Scheduled 

Valley Power Peaking Facility 300 OCGT Natural Gas Pipeline Scheduled 

Waubra Wind Farm 192 Wind - Onshore Wind Non scheduled 

West Kiewa 60 Hydro - Gravity Water Scheduled 

Yallourn W 1,480 Steam Sub Critical Brown Coal Scheduled 

Yambuk Wind Farm 30 Wind - Onshore Wind Non scheduled 
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E.4.2 Power stations used for annual energy forecasts for Victoria 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Anglesea 150 Steam Sub Critical Brown Coal Non scheduled 

Bairnsdale 94 OCGT Natural Gas Pipeline Scheduled 

Ballarat Base hospital 2.04 Spark Ignition 
Reciprocating Engine Natural Gas Pipeline Non scheduled 

Banimboola PS 12.5 Hydro - Gravity Water Non scheduled 

Berwick 4.6 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas Non scheduled 

Bogong/McKay 300 Hydro - Gravity Water Scheduled 

Brooklyn Landfill 2.83 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas Non scheduled 

Challicum Hills Wind Farm 52.5 Wind - Onshore Wind Non scheduled 

Codrington Wind Farm 18.2 Wind - Onshore Wind Non scheduled 

Dartmouth 185 Hydro - Gravity Water Scheduled 

Eildon 135 Hydro - Gravity Water Scheduled 

Energy Brix Complex (Morwell) 189 Steam Sub Critical Brown Coal Scheduled 

Hallam Hydro - SEW 0.25 Hydro - Gravity Water Non scheduled 

Hallam Road 6.7 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas Non scheduled 

Hazelwood 1,600 Steam Sub Critical Brown Coal Scheduled 

Hepburn Wind Farm 4.1 Wind - Onshore Wind Non scheduled 

HRL Tramway Road 5 OCGT Diesel Non scheduled 

Hume VIC 29 Hydro - Gravity Water Scheduled 

Jeeralang A 212 OCGT Natural Gas Pipeline Scheduled 

Jeeralang B 228 OCGT Natural Gas Pipeline Scheduled 

Laverton North 312 OCGT Natural Gas Pipeline Scheduled 

Longford 31.8 OCGT Natural Gas Pipeline Non scheduled 

Loy Yang A 2,180 Steam Sub Critical Brown Coal Scheduled 

Loy Yang B 1,000 Steam Sub Critical Brown Coal Scheduled 

Macarthur Wind Farm 420 Wind - Onshore Wind Semi 
scheduled 

Mornington Waste Disposal 0.77 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas Non scheduled 

Mortlake Units 566 OCGT Natural Gas Pipeline Scheduled 

Mortons Lane 19.5 Wind - Onshore Wind Non scheduled 

Murray 1 950 Hydro - Gravity Water Scheduled 

Murray 2 552 Hydro - Gravity Water Scheduled 

Newport 500 Steam Sub Critical Natural Gas Pipeline Scheduled 

Oaklands Hill Wind Farm 67.2 Wind - Onshore Wind Semi 
scheduled 

Portland Wind Farm 102 Wind - Onshore Wind Non scheduled 

Rubicon 13.5 Hydro - Gravity Water Non scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Shepparton Wastewater 1.1 Spark Ignition 
Reciprocating Engine Sewerage/Waste Water Non scheduled 

Somerton 160 OCGT Natural Gas Pipeline Scheduled 

Sunshine Energy 8.7 Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas Non scheduled 

Symex 5.9 OCGT Natural Gas Pipeline Non scheduled 

Tatura Biomass 1.1 Spark Ignition 
Reciprocating Engine Sewerage/Waste Water Non scheduled 

Toora Wind Farm 21 Wind - Onshore Wind Non scheduled 

Valley Power Peaking Facility 300 OCGT Natural Gas Pipeline Scheduled 

Waubra Wind Farm 192 Wind - Onshore Wind Non scheduled 

West Kiewa 60 Hydro - Gravity Water Scheduled 

Wonthaggi Wind Farm 12 Wind - Onshore Wind Non scheduled 

Wyndham Waste Disposal 1 Spark Ignition 
Reciprocating Engine 

Landfill Methane/Landfill 
Gas Non scheduled 

Yallourn W 1480 Steam Sub Critical Brown Coal Scheduled 

Yambuk Wind Farm 30 Wind - Onshore Wind Non scheduled 

Yarrawonga Hydro 9.5 Hydro - Gravity Water Non scheduled 

E.5 Tasmania 
E.5.1  Power stations used for operational demand forecasts for Tasmania 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Bastyan 79.9 Hydro - Gravity Water Scheduled 

Bell Bay Three 120 Hydro - Gravity Water Scheduled 

Catagunya/Liapootah/Wayatinah 170.1 Hydro - Gravity Water Scheduled 

Cethana 85 Hydro - Gravity Water Scheduled 

Devils Gate 60 Hydro - Gravity Water Scheduled 

Fisher 43.2 Hydro - Gravity Water Scheduled 

Gordon 432 Hydro - Gravity Water Scheduled 

John Butters 144 Hydro - Gravity Water Scheduled 

Lake Echo 32.4 Hydro - Gravity Water Scheduled 

Lemonthyme/Wilmot 81.6 Hydro - Gravity Water Scheduled 

Mackintosh 79.9 Hydro - Gravity Water Scheduled 

Meadowbank 40 Hydro - Gravity Water Scheduled 

Poatina 300 Hydro - Gravity Water Scheduled 

Reece 231.2 Hydro - Gravity Water Scheduled 

Tamar Valley Combined Cycle 208 CCGT Natural Gas Pipeline Scheduled 

Tamar Valley Peaking 58 OCGT Natural Gas Pipeline Scheduled 

Tarraleah 90 Hydro - Gravity Water Scheduled 

Trevallyn 93 Hydro - Gravity Water Scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Tribute 82.8 Hydro - Gravity Water Scheduled 

Tungatinah 125 Hydro - Gravity Water Scheduled 
Woolnorth Studland Bay/Bluff Point Wind 
Farm 140 Wind - Onshore Wind Non scheduled 

E.5.2  Power stations used for annual energy forecasts for Tasmania 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Bastyan 79.9 Hydro - Gravity Water Scheduled 

Bell Bay Three 120 Hydro - Gravity Water Scheduled 

Butlers Gorge Rev 14.4 Hydro - Gravity Water Non scheduled 

Catagunya/Liapootah/Wayatinah 170.1 Hydro - Gravity Water Scheduled 

Cethana 85 Hydro - Gravity Water Scheduled 

Cluny (includes Repulse) 17 Hydro - Gravity Water Non scheduled 

Devils Gate 60 Hydro - Gravity Water Scheduled 

Fisher 43.2 Hydro - Gravity Water Scheduled 

Gordon 432 Hydro - Gravity Water Scheduled 

John Butters 144 Hydro - Gravity Water Scheduled 

Lake Echo 32.4 Hydro - Gravity Water Scheduled 

Lemonthyme/Wilmot 81.6 Hydro - Gravity Water Scheduled 

Mackintosh 79.9 Hydro - Gravity Water Scheduled 

Meadowbank 40 Hydro - Gravity Water Scheduled 

Paloona 28 Hydro - Gravity Water Non scheduled 

Poatina 300 Hydro - Gravity Water Scheduled 

Reece 231.2 Hydro - Gravity Water Scheduled 

Remount 2.2 Spark Ignition 
Reciprocating Engine 

Landfill 
Methane/Landfill Gas Non scheduled 

Repulse 28 Hydro - Gravity Water Non scheduled 

Rowallan 10.5 Hydro - Gravity Water Non scheduled 

Tamar Valley Combined Cycle 208 CCGT Natural Gas Pipeline Scheduled 

Tamar Valley Peaking 58 OCGT Natural Gas Pipeline Scheduled 

Tarraleah 90 Hydro - Gravity Water Scheduled 

Trevallyn 93 Hydro - Gravity Water Scheduled 

Tribute 82.8 Hydro - Gravity Water Scheduled 

Tungatinah 125 Hydro - Gravity Water Scheduled 
Woolnorth Studland Bay/Bluff Point Wind 
Farm 140 Wind - Onshore Wind Non scheduled 
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